
Contents
zMUD allows you to connect to and play MUDs on the Internet, and provides you many
useful tools, such as aliases, actions, macros, keys, buttons, scripts, maps, etc, to make your
MUD life easier and more profitable.   

zMUD is available as a Freeware version (v3.62a) which is not supported, and a Shareware
version (v4.1 and above) which continues to be regularly updated and improved.    Support is
available to registered users of the Shareware version.    The latest version of zMUD can be
found at http://www.zuggsoft.com/zmud or in the TUCOWS Internet archive.    Questions,
suggestions, bug reports, etc can be sent to Zugg at zugg@zuggsoft.com

zMUD was designed based upon ideas from various versions of TINTIN, the popular UNIX
MUD client.    I have tried to provide compatibility with TINTIN so that users of that client will
feel at home.    However, since I have never actually used TINTIN myself, I cannot promise
full compatibility.    Concepts, functions, and syntax are similar, but may differ.    Of course,
the graphical environment of Windows allows functions that were not possible in the text-
based UNIX world, giving MUD players even more power.

zMUD has been optimized for use on DIKU and LP combat MUDs.    Since I dont play the
social MUDs, zMUD may or may not be useful in those cases.    However, in combat MUDs,
zMUD excels, providing many mechanisms for outlaws, robots, etc.

Features List of zMUD features
Getting Started Information for new users
Advanced Topics Information for power users
Menu Reference Reference for all menu commands
Command Reference Reference and syntax for commands
Function Reference Reference and syntax for built-in functions

Features
zMUD has unique features for both beginning MUD players, as well as for power wizards
builders and coders accustom to clients like TINTIN.    Here is a list of major features:

Macro keys assign text or commands to any key combination on the keyboard
Aliases assign text or commands to shortcut names to save typing
Triggers execute commands based upon patterns received from MUD.   

Sophisticated pattern matching functions are provided.
Variables both text and numeric variables saved with your session
Functions Built-in as well as user defined functions.    zMUD contains a powerful

programming language.
Buttons a unique GUI interface allows commands to be executed by clicking

buttons, or allows you to easily toggle features such as Triggers.
Paths let you record directions to MUD locations, and even play them back in

reverse.    Called speedwalking in some clients.    Path commands can
be customized.

Mapper A built-in mapping module creates maps of your MUD as you walk
around and provides manual editing features for those tough-to-map
locations.

Multiple CharsUsing a Multiple Document Interface (MDI), zMUD allows you to play
multiple characters at the same time in different windows.    Commands
can easily be sent between windows, or to all windows.

Spam protection prevents you from sending the same string to the MUD too
many times and being flagged a spammer

ANSI full ANSI color support.    Colors are user-configurable.
VT100 full VT100 terminal emulation, including cursor movement and scrolling

regions.    Great for MUDs with status lines
Telnet Works in both line-based MUD mode as well as character-based Telnet

mode.    You can use zMUD to log into your Internet Providers UNIX shell
account.

Multimedia Allows you to trigger sounds, MIDI, movies, etc.
Scripts store commands in a text file and read them in as a script
Character Database keeps a database of all of your MUD characters, and detailed

notes for each one.   
Tab completion allows you to enter long strings of text by typing the first few

characters and then pressing <TAB> to fill in the rest.    Shift-<TAB>
recalls the last long word sent by the MUD that started with a given
character.

History command history of last commands with customizable storage limit
Logging log your session to a file for review at a later time.    Log file supports

ANSI color
Timer a built-in timer allows you to take control of ticks
Status line customizable line shows the status of variables and triggers
Customizeable colors, fonts, sounds, special characters can all be modified and

saved.
Settings files saves all settings (aliases, macros, etc).    You can have a single

settings file for several characters.
Online Help extensive online help system provides both reference and examples.   

Context-sensitive command help is also a keystroke away.
Command Wizard command and function wizards show zMUD programming

syntax and help you create commands and functions
Connection Wizard contains a master list of MUDs to make connections easier
Compatability 90% compatibility with TINTIN and TINTIN+ text-based clients.   

Includes a TINTIN++ script importing and conversion facility.
WinSock uses WinSock networking to provide interoperability with all systems,

as well as SLIP/PPP with Trumpet WinSock software
Fast Benchmarked against other Windows MUD and Telnet clients as the

fasted scrolling client available
GUI provides both a GUI interface as well as a traditional command line

interface.    Output can be scrolled and word-wrapped, and window can
be frozen to prevent unwanted scrolling, and splitscreen shows
scrollback at same time as live text.    Scrollback buffer can be as large
as 16,000 lines of text (unlimited in 32-bit version)

Windows 95 developed and tested as both a 16-bit and 32-bit Windows '95
application.    16-bit version also works on Windows 3.x.    32-bit version
tested with Windows NT 4.0.

Getting Started
The very first time you start zMUD, you will need to read and accept the licensing terms.    If
you have not registered your copy of zMUD, you will then see the registration dialog.   
Registration can be done by either running the REGISTER.EXE program provided with zMUD
and following its instructions, or by using your Web Browser.    If you want to register using a
credit card, click the URL shown in the Register dialog and your Web Browser will be
connected to the proper Internet site (only tested with Netscape and Internet Explorer    does
not work on Windows 3.x).

After the registration dialog, you are presented with zMUDs main welcome dialog.    Behind
this dialog you can see the texture-mapped background of the main window, with a menu
bar along the top, and the command input window along the bottom of the screen.    As you
connect to MUDs, individual MUD windows will be displayed on top of the main windows
background.

The steps in getting started with zMUD are:

Quick Start
Create a new character
Character Database
Basic usage
Introduction to Macros
Introduction to Aliases
Introduction to Variables
Defining and Using Paths/Speedwalking
Introduction to Triggers
Introduction to Buttons
Introduction to Multiplaying
Introduction to Mapping

Quick Start
The easiest way to get started quickly with zMUD is using the Connection Wizard.    Either
press the Connection Wizard button in the welcome dialog, or select Connection Wizard from
the File menu.

The Connection Wizard will display a list of most known MUDs on the Internet, sorted by
their name.    You can press keys to scroll quickly to the MUD name that begins with the key
you press.    As you select MUDs from the list, or scroll through the list, the details of the
MUD will be shown in the fields on the right.    You can also edit the information on the right if
you desire.    When you find the MUD you want to connect to, simply press the Connect
button.    Press cancel to exit the wizard.

MUD Listings

The Connection Wizard can read three popular mud listing file formats from the Internet.   
The first two lists come from the Internet MUD Connector.    The short list is the smallest of
the files, while the Big List contains long descriptions of each MUD.    To update any of these
lists, you can click the World button in the upper right corner of the window.    Then click on
one of the URLs shown to launch your Web Browser and retrieve the new file.    (Note, on Win
3.x systems zMUD cannot automatically launch your browser, so the URL will just be copied
into the clipboard). This file should be stored in your zMUD directory to take immediate
effect.

Connecting to a MUD

zMUD will attempt to connect to the MUD that you have selected.    Once connected, the
MUD will normally ask for your username, followed by your password.    Once you have
entered this information, zMUD will ask if you want to create an auto-login trigger for this
MUD.    If you select Yes, auto-login triggers will be created, and your character name and
password will be saved to the character database.    Be sure and save your settings file
before you exit so that this login trigger will get saved.

Thats all there is to it!    You are now connected and playing a MUD.    You can continue
through this help section for more information to help you get started with zMUD.

Troubleshooting: If you have trouble connecting to a MUD and get the error message cant
lookup address, then you probably have an incorrect nameserver setup.    Setting up a
proper nameserver for your Internet connection is beyond the scope of this document,
however, there is a work-around for this.    When using the Connection Wizard, both the host
name and the host address are displayed.    If you are having trouble connecting to the
name, simply click the USE button to use the address rather than the hostname.    This will
prevent zMUD from trying to look up the address from a nameserver.    This will typically
allow you to connect to the MUD.    If the MUD administrators ever change the address of
their machine, your connection will stop working until you enter the new address.

Creating a Character
To create a new character, click the Character button from the welcome dialog, or select the
Another Character option from the File menu.    The Character Database dialog will be
displayed.    zMUD keeps track of all of your MUD characters in this database.    To start with,
the database will be empty.    To create a new character, click the New button.

The New Character dialog has several fields for you to enter data.    The cursor is initially
placed in the ID field.    Enter a unique short name for this character -- this field is used for
the title of the window, and is used in the #SESSION command (it can also be used as a
parameter to zMUD to automatically launch this character when you start zMUD).    Next,
enter the title or name of the MUD you will be connecting to into the Title field.    This is not
necessarily the Internet name or address, but is a more description name. Press <TAB> to
move to the Host field.    Enter the Internet host name or host address of the machine you
wish to connect to.    Press <TAB> again and enter the port number that the MUD is running
on. Now, click the Connect button to connect to the MUD.

If you leave the character Name and Password fields blank, zMUD will attempt to auto-detect
these values and set up an auto-login trigger for you.    If you dont want zMUD to create an
auto-login trigger, go ahead and enter values into the Character and Password fields.

Note: your character name and password are not required to use zMUD.    They are used by
the #CH (%char) and #PW (%pw) commands (functions).    Dont worry, your password stored
in the Character Database is scrambled.    As usual, use a unique password for each MUD,
and never use a password that is the same as any other computer you might have an
account on.

Settings Files

Associated with each MUD character is a file containing all of your preferences, colors,
triggers, aliases, macro keys, buttons, etc.    This file is called your Settings File.    zMUD will
automatically choose a setting file name based upon the title of the MUD.    However, you
can change this by clicking the Settings tab in the Character Database.

Here, you will see two file names: the primary settings file, and the inherited settings file.   
zMUD actually loads three settings files for each MUD character.    First, the DEFAULT.MUD
settings file is loaded.    This file is used to set overall program defaults, such as default
colors, fonts, etc.    Next, the Inherited Settings file is loaded.    Typically you will have an
Inherited file related to the type of MUD (LP, DIKU, MUSH, etc) that you are playing.    Finally,
the Primary Settings file is loaded, which contains the triggers, macros, etc specific to this
character.    In several preferences dialogs you will see options for using Inherited Settings,
or using the Primary Settings.    Note that you can normally only edit the contents of your
Primary file.    To edit an Inherited File or to edit the Default file, open an Empty window
(using the Empty button in the Character dialog), and use the Settings/Load menu to load
the file you wish to edit.    Then make your changes and save this file.

Another field in this dialog allows you to set the number of days since you last connected to
a character that the character is considered old.    Old characters are shown in red in the
Character Database to remind you to connect to them and prevent them from being deleted.
The default value for this setting is 10 days.

Other Character Fields

The drop down box to the right of the MUD Title allows you to specify the type of MUD you

will be connecting to.    Currently, this is not used for anything other than for your own
information.    The Comment field is a place for a short comment (like the class, race, or level
of your character).    By clicking the Notes tab, you can enter free-form text.    This allows you
to keep miscellaneous notes about the MUD and character you are playing.

Character Database
In the Character Database, accessed by selecting Character from the main splash screen, or
by selecting Another Character from the File menu, you create and manage all of your MUD
characters.    To create a new character, click the New button.    To edit an existing character,
select the character by clicking on one of the lines, and changing the information shown to
the right.    To delete a character, select it by clicking on it, then click the Delete button.    You
can also make a copy of a character by selecting it and clicking the Copy button.

To connect to the MUD associated with a character, select the character by clicking on it,
then click the Connect button.    A TELNET connection will be made between your computer
and the computer listed in the Host field for your character.    Several attempts to connect
are made.    If your computer is unable to connect to the host a Cannot Connect dialog will
be shown.    It is possible that the Host MUD is currently unavailable.    You should also check
your network connection to make sure it is working.

If you want to work on your settings while disconnected from the network, select the desired
character and click the Offline button.    This will load the settings and open the MUD
window, but no text we be sent to or from the network.    If you click the Empty button, a
blank MUD window will be opened.    This is useful for loading and editing individual settings
files in order to edit them.

Basic Usage
Once you are connected to the MUD, you will typically be prompted for your character name
and password.    zMUD tries to auto-detect this, and will pop-up a dialog with your character
name and password and ask if you want zMUD to create an auto-login trigger for you.    If you
click OK, then the next time you log-in, zMUD will automatically enter your character name
and password.    If you click Cancel, this trigger will not be created for you.    Of course, the
next time you log in, zMUD will ask about creating the trigger again.    If you want to stop
zMUD from auto-detecting your login process, simply go into the character database and fill
in a value for your character name.

Note that the text you type appears in the bottom Command Line entry field.    When you
press <Enter>, the text in this field is sent to the MUD.    It is also echoed to your text
window if you have the Echo flag enabled (default is enabled) using the current command
color (changeable in the Color preferences).

When you enter your password, it will also be echoed to the screen.    To prevent this, use the
#PW command.    Type #PW and press <Enter>.    The password for this character that you
entered in the Character Database will be sent to the MUD, but it will not be echoed to the
text window.    Also note that # is the default command character and you can change this in
the Preferences dialog as described later.

The Command Line

Once you have entered your character name and password, answer any other questions
displayed by the MUD.    All of the text that you type will be shown in the command line.    You
can use the <Backspace> key to edit this line.    You can also move the insertion point within
the command line by clicking the mouse at the point you want to start typing.    If you have a
separate set of arrow keys on your keyboard, you can use the right and left arrow to move
within the command line.    Note that the keys on the numeric keypad have macros assigned
to them by default so they cannot be used as arrow keys.    When you press <Enter>, the
text in the command entry field is sent to the MUD.    If the Echo flag is enabled, it will be
shown in the large text window in the current command color

You can enter multiple commands on the same line using the Separator character, which
defaults to semi-colon (;).    Thus, eat bread;drink water will send the two commands eat
bread and drink water to the MUD in quick succession.    Also, when commands are sent to
the MUD from the command line, a newline (CR/LF) is always added to the end
automatically.    To prevent this newline from being sent, you can put a tilde (~) character at
the end of the line.    The text (without the tilde) will be send to the MUD without an
automatic newline.

The Output Window

You can scroll the main MUD window by clicking the scrollbars to the right and below the
main window.    You can also use the PgUp and PgDn keys on the keyboard (but again, not
the number pad).    When you scroll the window, the screen is split, with the scrollback
shown above and the live text from the MUD shown at the bottom.    The split bar can be
dragged to any position to see as much or as little live text as desired.    Once the screen is
split, the Shift-Up and Shift-Down arrows can be used to move line by line, or the PgUp and
PdDn keys can be used to scroll a page at a time.    You can still type commands in the
command line and send them to the MUD while the screen is split.    To unsplit the window
and automatically return to the bottom of the scroll buffer, click the Pause button in the
lower right corner of the window, or press the Ctrl-Z key, or press the ScrollLock key, or

select the Split command from the Window menu, or type #FREEZE on the command line.   
You can also unsplit the window by dragging the scroll bar to the bottom.

You can search for text in the output window using the Find command in the Edit menu, or
by pressing Ctrl-F.    You can search backwards (default) and forwards through the buffer.   
Since this buffer can grow quite large, especially in the 32-bit version of zMUD, the Find
command is very handy for rapidly locating past text.    The screen is automatically split
when the text is found so that you can view the scrollback buffer and the live text at the
same time.

You can also copy text from the output window and paste it into other programs.    When you
highlight text with the mouse (click the left button at the starting location, drag the mouse
with the left button still held, then release the mouse button at the end location) the screen
is automatically frozen to prevent scrolling from disturbing your selection.    When you
release the mouse button, the text is automatically copied to the clipboard.    You can select
large portions of text (more that a screenful) by left clicking the start location, the left
clicking while holding the Shift key at the end location.    If you double-left-click, the word
under the mouse is highlighted then copied to the clipboard. If you left-click in the narrow
margin to the left of a line, the entire line will be selected.

Contents of the screen are stored to the clipboard in both plain ASCII text format and in color
ANSI format.    When you paste to an external program like Notepad, the plain text format is
used.    If you paste to the Command Editor the ANSI color format is used to preserve MUD
colors.    If you paste to the Command Line, plain text is used unless you have defined a color
translation syntax in the color preferences in which case the ANSI color is converted to color
commands for your MUD.    If you paste more than one line of text into the command line,
the line breaks are replaced with the command separator character (;).

Introduction to Macros
One of the first ways to make zMUD do more than just a dumb TELNET client is to assign
commands to keys on your keyboard.

To assign a command to a key, press Control-K, or select Define Key from the Action menu.   
You will be prompted to press the key combination that you wish to assign a command to.   
Almost any key on the keyboard can be assigned a command, in combination with the Shift,
ALT, and Ctrl keys.    You cannot override any of the zMUD command keys (like Control-K).    If
you assign a command to a Windows key (like F10, or Alt-A), your command will work and
the Windows function will be disabled - be careful.    Also, note that zMUD automatically
activates the NUMLOCK mode to allow you to assign macros to the keypad.    If NUMLOCK is
off, the keypad functions as the cursor keys.    Since the cursor keys are used to edit the
command buffer and recall from the command history, you should refrain from assigning
macros to the arrow keys (although you can if you want).

Once you press the key you want to assign a command to (for example, the NUM8 key, the 8
key on the keypad) you will be prompted for the command.    Enter the text you wish to be
sent to the MUD when you press this key.    For example, if you were assigning a command to
the NUM8 key, you could enter the text north.    Now, when you press the NUM8 key, the text
north is sent to the MUD.    Notice that when you press a macro key the text in the command
entry field is selected, but is otherwise undisturbed.    This is a very useful feature.    For
example, if there is a monster to the north that you want to hit quickly before it can hit you,
you can enter kill monster in the command entry field, press the NUM8 key (to move north)
quickly followed by pressing <Enter> to send the kill command to the MUD.

The setting files DIKU.MUD and LPMUD.MUD contain some sample macro key assignments
that I have found useful for these two types of combat MUDs.

Macro Chaining

If you want the text assigned to the macro key to be put into the Command Line rather than
sent directly to the MUD, put a tilde (~) at the end of the text assigned to the key.    Then,
when you press the macro key, the text will be added to the command line and your cursor
will be placed right after the text so that you can complete the command and press return.

You can also chain macros using the above feature.    When you press the macro key that has
the tilde at the end, the text is placed into the command line.    If you then press a normal
macro key, the text is added to the command line and the finished command is sent to the
MUD.   

Heres an example: assign the text open door ~ to the F8 key.    I assume you have the
normal directions like north, south, east, etc assigned to the numeric keypad.    When you
press F8, the text open door    is put into the command line.    If you now press the 2 key on
the keypad (south), the word south is added and the command open door south is sent to
the MUD.    All in just two keystrokes!

Introduction to Aliases
Aliases are another way to simplify your life of MUD playing.    Basically, aliases allow you to
assign any command to a shortcut abbreviation.

The easiest way to create an alias is to type the command or words you want to make a
shortcut for, then press Control-A, or select Make Alias from the Action menu.    You will be
prompted for the shortcut abbreviation you wish to assign the command to.    For example,
enter the text fill waterskin statue and press Control-A.    Then enter fs and click OK.    Now,
whenever you enter fs in the command buffer, the string fill waterskin statue will be sent to
the MUD.

Note that aliases are only translated if they are the first word in a command.    In the
example described above, if you entered the text say fs on the command line, the string say
fs is sent to the MUD and fs is not translated.

Alias Preference dialog

You can edit all of your aliases using the View/Aliases menu command.    This brings up the
alias dialog.    All of your aliases (like fs from the above example) are displayed in the list on
the left.    As you click on these aliases you can edit them on the right.    To define a new
alias, click the New button and enter the name and commands for the alias.    You can copy
an existing alias using the copy button, and delete an alias using the button with the picture
of a trash can on it.

This is an example of a standard zMUD Preferences dialog.    It has a list on the left with edit
controls on the right.    The OK, Cancel and Help buttons are along the button.    Along the top
of the dialog is a menu strip that lets you access the other preferences such as macros,
triggers, etc.    To the left of the menu strip is a button with a stick pin on it.    When you click
this button, the window will stick to the top of the screen and not get covered up by other
windows.    This button toggles so if you click it again the dialog returns to a normal window
that can be obscured by other windows.    Note that the status of the stick button and the
position of the dialog is saved in your ZMUD.INI file.    Along the bottom of the dialog is a help
bar that displays information about the field that the mouse is positioned over.

The ALIAS command

Another way to define an alias is using the #ALIAS command.    Commands are typed
entirely in the command input line at the bottom of the screen, but perform a function for
zMUD and normally don't send any text to the MUD.    Commands are provided for users of
text-based MUD clients like TINTIN, and are similar in syntax.    To create an alias with the
ALIAS command, type #ALIAS shortcut {command text}.    The command text will then be
assigned to the shortcut abbreviation that you supply.    You can also list all aliases by just
entering #ALIAS, or you can list the definition of a single alias using #ALIAS shortcut.

Aliases can also contain Parameters.    Parameters are the text following the shortcut.    For
example, if you enter fs foo bar, fs is the alias shortcut, foo is the first parameter, bar is the
second parameter.    Parameters are assigned to specific numeric variables %1 through %99. 
In the previous case, %1 would contain foo, and %2 would contain bar.    You can use these
parameters in the alias itself.

For example, define the alias #ALIAS k {kill %1}.    Now when you enter k rabbit, the
command kill rabbit is sent to the MUD.    Now, this isn't a very useful example, because if
you add text after an aliases (like rabbit in the above example) and the alias doesn't use it

as a parameter, the extra text will just be appended to the result of the alias translation.   
Thus #ALIAS k kill followed by k rabbit will do the same thing.    However, with parameters
you can get more sophisticated.    For example, the alias #ALIAS kk {kill %1;kick %1}
followed by kk rabbit will send the commands kill rabbit and kick rabbit to the MUD.

One last tidbit...if you assign a command to the alias atconnect, it will be executed whenever
you connect to the current MUD.    Other special aliases include: atexit which is executed
when you exit zMUD, and atdisconnect which is executed when you disconnect from the
current MUD.

Introduction to Variables
Variables are very similar to aliases.    The important difference between aliases and
variables is that aliases are only expanded when at the beginning of a command, while
variables are expanded anywhere.    To expand the variable, you precede its name with the
@ character.    Note that this is different then TINTIN where variables start with a $.    You can
change the variable character in the Preferences dialog if you wish.

To define a variable, you still use the #VARIABLE command.    For example, #VAR container
waterskin stores the string waterskin into the variable container.    To return the contents of
the variable, precede its name with the @ character.    For example, fill @container would
expand to fill waterskin.

Another assignment syntax is also provided.    As with some programming languages, you
can use the syntax variable=value to assign a value to a variable. All variables are stored
internally as character strings, just like aliases.

So, the illustrate the use of variables, with the variable @container defined as shown above,
you could now create an alias #ALIAS fs {fill @container statue}.    Now when you enter fs
on the command line, the current value of the container variable (waterskin from the above
example) is expanded and the command fill waterskin statue is sent to the MUD.

Variables are only expanded in the command line when the Expand Vars option is turned on
in the General Preferences.    If Expand Vars is turned off and you want to expand a variable
in the command line, enclose the variable reference in angle brackets (<>).    For example, if
you type fill @container on the command line, fill @container will be sent to the MUD.   
However, if fill @container is being executed within an alias or script, then it will be properly
expanded.    To force it to expand on the command line, you would enter fill <@container> or
turn on the Expand Var option.   

System Variables

There are also several predefined system variables that are maintained by the system.   
These variables all begin with the parameter (%) character.    Changing temporary variables
does not change the modified status of your settings file, so you aren't prompted to save
your settings when you exit.    These system variables are used just like regular variables,
except with the % character instead of the @ character.   

Predefined Variables
The system maintained several predefined variables for you to use.    Each of these variables
begins with an underscore character to signify that it is a temporary variable.

%action the action executed from the last trigger
%char the name of your MUD character
%cr a newline character
%ctime the number of seconds you have been connected to the MUD
%def current list of special characters
%host the host name of the current MUD
%i same as %repeatnum
%lastcom the last command executed
%lastcom2 the command before the last command executed
%lastcom3 the command before %lastcom2
%lastinput the last line of commands executed
%line the last line received from the MUD
%line2 the line before the last line received
%line3 the line before the line before the last line received
%param1 the first parameter from the last trigger match
%param2..%param99 the parameters from the last trigger match
%port the current port connected to
%random a random number from 0 to 99
%repeatnum the current index during repeating commands, or loop command
%selected returns the text currently selected in the output or command buffer
%selline currently selected line
%selword currently selected word
%title the title of the current MUD
%trigger the line that caused the last trigger
%window the name of the current window

Introduction to Paths/Speedwalking
Paths are a very powerful feature that allow you to save the directions to a location and then
replay these directions at high speed at a later time.    This is also called speed walking in
other MUD clients.    Not only is this useful for getting to common areas within the MUD, but
the directions are replayed fast enough to get you past some aggressive monsters (agros).   
This is not fool-proof as some MUDs have high aggressive monsters that will hit you anyway. 
Also, when leading a party, sometimes the monster will still hit one of your other party
members.    However, it works most of the time and you will find yourself using Paths quite a
bit.

To record a path, enter the #MARK command, or select Speedwalking from the Action menu
and press the Start Recording button.    Then use your normal movement commands to walk
to the final destination.    Then, use the #PATH command to save the directions by entering
#PATH shortcut.    Or, you can select Speedwalking from the Action menu, press the Stop
Recording button and enter the shortcut name for this path.

Paths are saved as aliases preceded by a special character called the Movement character,
which defaults to a period (.).    To replay the path directions, go to the start of the path that
you saved earlier with the #MARK command, and enter .shortcut.    The directions saved in
the path shortcut will then be replayed at high speed.

You can also send a set of directions at high speed using the Movement character by
entering directions.    For example .neesuwd will send north, east, east, south, up, west,
down to the MUD at high speed.    You can proceed any direction with a number to repeat it
that many times.    The above path could be abbreviated .n2esuwd.

While recording a path (after entering the #MARK command), you can inspect the current
path being recorded at anytime by entering #PATH (with no parameter).    The current path
relative to the marked starting location will be shown in the direction syntax described
above.    If you make a mistake and go the wrong direction, you can use the #BACKUP
command to erase the last direction from the currently recorded path.    It will also attempt
to move you to your previous location (e.g. if you went north by mistake, then did #BACKUP,
you will be moved south).

A useful function that zMUD has added over other clients that have path features is the
ability to reverse a path.    For example, let's say you have the path .2s2wn assigned to a
shortcut called magic (gets you from temple to magic shop).    When you enter .magic while
in the temple, you are taken to the magic shop.    Now you buy whatever you need, and then
you want to return to the temple.    You can use the #REVERSE command to reverse the path
by entering #REVERSE magic.    You can also use the shortcut syntax of two dots: ..magic.   
The path .s2e2n will be sent to the MUD.    If you enter #REVERSE with no parameters, than
the currently recorded path (since the last #MARK) will be reversed.    Kind of like leaving a
trail of breadcrumbs.    Note however, that in many cases, going east to a room doesn't
necessarily mean that entering west will go back.    The #REVERSE command only works in
"Euclidean" areas of your MUD.

Note that speedwalking relies upon definitions of commands like north, south, down, etc.   
You can add your own commands and short-cuts (such as o for open door) using the
View/Directions menu command.

Introduction to Triggers
Triggers can be tricky, but are also the most powerful feature of zMUD.    Triggers (called
actions on other MUD clients) allow you to execute a command whenever a particular string
of text is received from the MUD.    While this sounds simple, it has powerful implications.

To define a trigger, you use the #TRIGGER (or #ACTION) command.    The syntax is
#TRIGGER {pattern} {command}.    Whenever the pattern text is received from the MUD,
the command is executed.    You can also define and edit triggers using the View/Triggers
menu command to display the Trigger dialog.

Let's start with a simple example.    When you are working in a group, it is important to see
anything that someone in the group has to say.    When someone in the group talks, the MUD
usually says something like Zugg tells the group 'heal me'.    To ensure you don't miss this
important information, let's change the color of the line to red using the #COLOR red
command.    Thus, the trigger would be defined as #TRIGGER {tells the group} {#COLOR
red}.

That was easy, and triggers like this can really enhance your MUD playing.    Here's another
useful example: #TRIGGER {You are thirsty} {dr}.    With an alias like #ALIAS dr {drink
@container} this trigger will keep your stomach happy and full by automatically drinking
whenever you are thirsty from whatever container you have.

Extracting text from the MUD

Patterns can contain more complicated expressions and wildcard characters, and parts of
the matched pattern can be stored in special parameters for use in the command string.   
Parameters were introduced when Aliases were discussed.    The way you store part of the
pattern into a parameter is by surrounding the part of the pattern with parenthesis.    One of
the wild-card strings for a pattern is %w which matches any word.    So, for example
#TRIGGER {(%w) tells you} {tell %1 I am busy} will match any string from the MUD that has
a word followed by the string tells you.    Thus, when you receive the string Zugg tells you
'Hi', you will automatically send the command tell Zugg I am busy to the MUD.

Here's another really useful one:    #TRIGGER {You get (%d) coins} {split %1}.    Since %d
matches any set of numeric digits, whenever you pick up some gold coins, you will
automatically split them to your group!

Trigger Classes

Now, you wouldn't want the above trigger to be active all of the time.    Splitting coins when
you are not in a group is not recommended.    To assign a name (called a Class name) to a
trigger, provide the name as the optional third parameter to the #TRIGGER command.    For
example: #TRIGGER {You get (%d) coins} {split %1} autosplit.    Then you can turn the
trigger on with #T+ autosplit, or turn it off with #T- autosplit.    Assign these two commands
to macro keys or buttons and you have full control over when you split and when you don't.

Introduction to Buttons
Combining the concepts of aliases, triggers, and variables are Buttons.    Buttons not only
make it easier for novice users to use these features, but provides significant functionality to
power users that is not found in text-based clients such as TINTIN.    Buttons can be clicked
to execute a command, their caption can display the value of a variable, and they can act as
a toggle to turn a feature (like triggers) on and off easily.

To define a button, right click on the button you wish to edit, or select Make Button from the
Action menu.    There are currently two types of buttons: push buttons and toggle buttons.   
A push button is clicked to execute a command and releases as soon as you release the
mouse.    A toggle button changes between being off (up) or on (down).    The type of button
is controlled by the Variable field.    If you assign the name of a variable to this field, the
button will be a toggle button, and the variable will contain the state of the button (0 for
up/off, 1 for down/on).

In the Off Caption, enter the text you wish to display on the face of the button when the
button is in its normal, off position.    The next field is for the caption to be displayed when
the button is pressed in, or on (this field is grayed out if the button is not a toggle button).   
If you leave the On Caption blank, it will use the same value as the Off Caption.    You should
limit captions to about 10 characters so that they fit on the button face.    The value of the
caption fields are evaluated, so you can put an expression containing variables and the
result will be displayed on the button.

We'll skip the Value field for a moment, and move to the On Command field.    Enter the
command you wish to execute when the button is pressed (from Off state to On state).    In
the Off Command field, enter the command you wish to execute when then button is
released (from On state to Off state).

The Value field is used to externally control the state of the button.    You can do this with just
the variable (e.g. if you assign 1 to the variable in the Variable field, the button will activate
itself, if you assign 0 to this variable the button will deactivate itself).    However, the Value
field allows greater control as to whether the button is pressed or not.    If the expression in
the Value field is true, the button is in the On state (pressed).    If the expression in the Value
field is false, the button is in the Off state (released).

So, how about an example?    In the Introduction to Triggers we created an autosplit trigger.   
We can make this trigger much more user friendly by using it with a button.    Select Make
Button from the Action menu.    In the Off Caption field, enter the text AutoSplit.    In the On
Command field enter emote is auto-splitting;#t+ autosplit.    In the Off Command field enter
emote stops auto-splitting;#t- autosplit.    In the Variable field, enter autosplit.    Click OK to
save the button definition.    Now you have a button labeled AutoSplit, and it is currently off.   
Click the button.    The command emote is auto-splitting is sent to the MUD (telling your
group members what you are doing), and the autosplit trigger is enabled.    The semi-colon
(or Separator character) allows you to specify more than one command on the same line.   
Note that the button now appears in the On state (is pressed in).    This gives you the visual
clue that your AutoSplit function is enabled so that you don't forget.    Click the button again. 
The text emote stops autosplitting is sent to the MUD, and the autosplit trigger is disabled.   
The button now appears in the Off position.    Now you don't have to waste two keys on the
keyboard to turn your autosplit trigger on and off, and in addition you have a nice visual clue
as to whether your trigger is active or not.    Try to beat this in a text-based MUD client!

Advanced Settings

In the advanced settings tab you can control many attributes of your buttons.    You can set
the color of the button, change the size or location, and assign a graphic (BMP file format) to
the button.    This allows you to create button bars that can be very complex.

Introduction to Multiplaying
If you connect to more than one character or more than one MUD (using the Another
Character menu command or the Connection Wizard), zMUD will put each character into a
different window.    This allows you to control multiple characters at once (called multiplaying
and is banned on many MUDs).

The commands that you type in the command box are sent to the character window that
currently has the focus.    This is usually the window on top.    You can change the currently
focused window in several ways: select the window from the list given in the Window menu,
select it from the tablist of windows shown at the bottom of the screen (just above the
command line) when more than one window is open.    You can also cycle through the open
windows using the Ctrl-N or Ctrl-Tab keys.

Each window has a name associated with it.    The default name for a window is the ID of
your MUD character.    You can change this name using the #NAME command.

To send commands to a different window, precede your command with name: where name is
the name of the window you wish to get focus, and : is the focus character (which can be
changed in the Preferences).    The indicated window will be brought to the top and focused,
and the command will be sent to that character.    To send a command to a different window
without changing the focus, precede your command with :name: where name is the name of
the window you want to command sent to.    In this case, your current window will be
unchanged. If you do not specify any window name, and just enter :hi then hi will be sent to
all windows.

Note that when referring to windows by name, you dont have to spell out the entire name,
just use enough characters to uniquely determine the window.    For example, if you have a
window named zugg, then typing z:hi is enough to send hi to the zugg window.    You can also
refer to windows by there number (shown next to the name in the Window menu).    For
example 1:hi sends hi to the first character window.    Variables are also allowed before the
colon.    If the variable @tank contains the value zugg, then @tank:hi will send hi to the zugg
window.

Note that you can also mix these focus commands within your command line.    For example,
entering zugg:eat;aurora:drink will send the eat command to zuggs window, and the drink
command to auroras window.    Auroras window will have the focus at the end of this.    Lets
look at some more examples to make this clearer.    In all of these examples, assume that we
have two windows, Zugg and Aurora, and that Auroras window currently has focus.

eat;zugg:drink tell aurora to eat and zugg to drink.    Gives zugg the focus.
zugg:eat;drink tell zugg to eat and drink and give zugg the focus
:zugg:eat;drink tell zugg to eat (dont change focus) then tell aurora to drink
zugg:eat;::drink tell zugg to eat and give him the focus.    Then, change the focus

back to aurora and tell her to drink.

Finally, you can use tab completion to change window focus without sending any commands
to the window.    Typing zugg: and pressing <TAB> will give the zugg window focus and bring
it to the top.    The command buffer will then be cleared, awaiting commands to be sent to
this window.

Window Activity

When you have more than one window open, each window is listed along the bottom of the

screen in a tab bar.    Each tab shows the name of the window.    If you move your mouse over
the tab, more information about the window, such as the MUD name and character name
will be shown.    To activate a window, just click on a tab.    This is the same as clicking on the
window itself, or selecting it from the list in the Window menu.

To the right of the window name in each tab is an activity indicator.    When the indicator is a
simple circle, that indicates the current window that has focus.    Other status indicators
include:

red dot session has been disconnected
green dot session has received new text since the last time it was active
yellow dot session has disconnected, but was able to automatically reconnect
yellow bolt session is connecting

Introduction to Mapping
The Shareware versions of zMUD have a mapping module built-in that allows you to create
maps of your MUDs.    These maps are interactive and in addition to simply giving you a
visual picture of your MUD, allow you to speedwalk anywhere based upon room names,
prevent you from entering dangerous rooms, keep track of the location of mobs and objects,
and much more.    The automapper adds a whole new perspective on MUDding, both for new
users as well as advanced users.

While the mapper is very useful for new players, setting up the mapper to work properly on
your MUD can be a challenge.    If the information in this section is above your head, ask
around on your MUD to see if someone else has configured their mapper settings already.

Here are some of the basic features of the mapper:
Zones allow maps within maps. Each zone can be multi-level
Can speedwalk to a room by double-clicking on the map
Room names and descriptions (and exits) automatically captured from the MUD
Can automatically generate map (to some extent) as you walk around
Manual editing functions for tweaking the map
Handles multiple levels (up/down), along with all 8 normal directions (n.s,e,w,ne,nw,se,sw)
Cost of room traversal can be adjusted to improve optimal speedwalking
Rooms can be flagged as water, fly, and traps.
Rooms can be marked Do not enter to prevent speedwalking through them
Versatile parsing can handle many MUD formats
Can read map templates and link them into your own maps
Handles one-way exits for maze areas

Select one of the help topics below, or press the Next button to go to the next mapper topic:

Configuring the Mapper
Example configurations
Basic map creation
Zones
Advanced map usage

Configuring the Mapper
Because every MUD is different, it is impossible to pre-configure zMUD to automatically start
mapping the MUD you play.    Before you can start using the mapper, you must tell it some
things about your MUD so that it can figure out what a room description looks like, and how
your MUD displays the exits from a room.

zMUD makes extensive use of the exit information displayed by a MUD.    Because of this,
make sure you have turned on any option or flag necessary on your MUD to see the exits
from a room.    Also, at this time zMUD does not handle exits that are displayed as part of
your prompt, or exits that take up more than one line.    Support for these types of MUDs is
planned in a future version of zMUD.

The automapper is intimately tied with the Direction codes used by the speedwalking
module.    If you are not using the standard DEFAULT.MUD default settings file that is supplied
with zMUD, make sure you edit your Direction Codes so that they are tied to the proper map
directions.    Ifyou dont know what this means, assume you are using the proper default file
and continue reading.

To configure the mapper, make sure you are connected to your MUD, then open the
Automapper from the Windows menu.    Before doing anything else, select the Preferences
from the Edit menu of the mapper window.    You might also want to click the Stick Pin button
in the upper left corner of the mapper window to keep it on top of your other windows so
that you can see it all the time.

You will see several tabs in the Mapper Preferences.    Here is what each tab is for:

General set some general global options such as the existence of various
toolbars in the mapper window.

Colors allows you to customize all of the colors used by the mapper
Strings set strings displayed by the MUD when you cant move in a certain

direction
Full Parsing instructions for how to parse a full room description
Brief Parsing instructions for how to parse a brief room description
Look Parsing instructions for how to parse the output of your MUDs look command

Basic Configuration

The first items that need configuration are in the Strings tab.    In this tab, you must enter
the command used by your MUD to display the room description (usually this command is
look).    Next, enter the string displayed by your MUD when you enter a dark room (usually: It
is pitch black).    You can also put in the strings displayed by your MUD when you cant go in a
certain direction.    Next, you need to tell the mapper how your MUD displays room exits.

Select the Full Parsing tab.    Room exits are usually shown with full words (like north, south,
east, etc) or in a condensed format like NSEW.    Select the type of exits used by your MUD
using the radio button on the Full Parsing tab.    If your exits are displayed different in Brief
Mode or by the Look Command, select the appropriate tab and change the exit type on that
tab.    Next, you must enter a trigger pattern to allow the mapper to detect the room exits.   
This is a full pattern of the same type used by zMUD Triggers.    In general, just enter the text
displayed by your MUD before the actual exits are displayed.    You probably want to start the
pattern with a ^ character to match the beginning of a line.    Also, keep in mind that you
have to escape any special zMUD pattern characters like [], (), or {} with the escape
character (~).    The part of the string after what is matched by the trigger is used as exit

info.    Or, if you want to get fancy, the first parameter (%1) returned by the pattern is used
to parse the exit information.    If your room exit information is displayed in your prompt,
click the Prompt option.

Heres a simple example:
Your MUD displays exits like:
There are obvious exits: north, south, up
Set the mapper for full words, then use an Exit Pattern of: ^There are obvious exits:

Heres a more complicated example:
Your MUD displays exits like:
[Exits: north, south, west]
Set the mapper for full words, then use an Exit Pattern of: ^~[Exits:

Punctuation and spurious words like and are ignored when parsing the exit line.

Parse Tables

Now that you have told the mapper how to recognize the room exits, you must now give
instructions on how to recognize the room name and description.    There are three
preference tabs to control this: Full, Brief, Look.    They all work the same way.    In the Look
tab there is a setting to tell the mapper to use the same instructions as the Full tab, and this
is set by default.    Thus, most people only need to set the instructions in the Full Parsing tab.

When you click on this tab you will see a set of instructions for the mapper in a box on the
left, and a bunch of buttons on the right indicating the type of line that your MUD sends.    To
change the instructions, simply drag a button from the right into the proper position in the
box on the left.    You can also select instruction lines in the box on the left by clicking on
them.    Once selected, you can move them up or down, or delete them using the buttons
below the box.

Here is what each of the buttons listed on the right do:

Room name Capture the name of the room. If a Room Trigger is defined in
the Trigger tab, the first parameter of the trigger will capture the room name,
and the optional second parameter will capture the room exits. If no room
trigger is defined, the entire line is taken as the room name

Room description Capture multiple lines of the room desription.    A room
description is terminated either by a blank line, or by the next item (if a room
name or room exit item

Room exits Captures the exits of the room. Uses the Exit Trigger defined in
the Trigger tab to capture the exits. In the Trigger tab you also set whether
exits are words (like north, south, etc), or just characters (like NSEW). The first
parameter of the trigger determines the text to parse. The directions must
match the commands specified in the Direction Settings (under the Speedwalk
dialog). Any other words are ignored, and any punctuation is ignored.

Blank line Waits until a blank line is received until continuing with the
parsing

Skip line Throws away one line.

An instruction list of

Room name
Room description
Room exits

works on most standard DIKU MUDs.    Note that only lines received from the MUD are
examined when using these instructions to find the room name, etc.    Lines that you enter at
the keyboard and send to the MUD are ignored.    Also, any lines that are gagged (using the
#GAG command) or filtered (using the #NOMAP command) are ignored by the parser.

The Room Trigger is only used in very rare situations.    It allows you to capture room names
and room exits from a single line.    Here you specify a trigger pattern with two parameters.   
The value of parameter 1 (%1) is used as the room name, and the optional value of
parameter 2 (%2) is used to parse room exit information.

Map Configuration Examples
In this section I will list some common MUD output formats and give you the settings needed
by the mapper in each case.

MERC MUD (from Dark Castle)

Arcanus Way
      Sturdy branches rise from the trees on either side of the road and extend towards each
other tentatively, criss-crossing and caressing like young lovers.    Arcanus Lane ends
abruptly to the east at Midwitch, and the Magic
Shoppe lies to the south.
Exits: east south west

Use a Full Parse table of:
Room name
Room description
Room exits

with full-word exits and an exit trigger of:
^Exits:

DIKU MUD (from Highlands II)

The Temple Square
      You are standing on the temple square.    Huge marble steps lead up to the temple gate.   
The entrance to the Clerics Guild is to the west, and the old Grunting Boar Inn, is to the east. 
Just south of here you see the market
square, the center of Glen Finin.
[Exits: n e s w u]
An oozing green gelatinous blob is here, sucking in bits of debris.

Use a Full Parse table of:
Room name
Room description
Room exits

with full-word exits and an exit trigger of:
^~[Exits:

LPMUD

A long road going through the village.    There is a hole leading down.    The road continues to
the west.    To the north is the shop, and to the south is the adventurers guild.    The road runs
towards the shore to the east.
        There are five obvious exits: north, south, east, west, and down.

LPMUDs are tricky because only the room description is given in full mode, and only the
room name is given in brief mode.    Also, the exit line varies.    If there is only one exit, the
line reads:
        There is one obvious exit: north

So, use a Full Parse table of:
Room description

Room exits

and a Brief Parse table of:
Room name
Room exits

Then, use full-word exits with an exit trigger of:
^There * obvious exit?:

Then you will have to map once in brief mode to get all the names, then go back in full mode
to fill in the descriptions.

From Forest MUD:

Break in the Path
[Exits: east south up]

The path here takes a noticeable step upward as you continue to the west.    An animal trail
leading into the thick brush is evident to the south, showing tracks from many of the local
fauna.    The main path continues to the east, where the faint sound of waves on a shore can
be heard.

A mangy mutt scrounges for some food.
A beast of burden trudges along the path.
A mangy mutt scrounges for some food.

Use a Full Parse table of
Room name
Room exits
Blank line
Room description

Use full-word exits with an exit trigger of:
^~[Exits:

Basic Map Usage
Now that you have the mapper configured, lets use it to create a simple map.    First, we will
work offline (in case you didnt get the configuration correct yet) to play with some of the
basic map features.    Thus, if you are connected to your MUD, close your connection and
window.    Then, from the Character Database, select the Empty option to get an empty
window, then open the Automapper from the Windows menu.

User Interface

The mapper window consists of a main window (currently displaying a single small square
with a blue dot in it), a speed-button bar along the top, just under the menu, and a button
bar along the right side (call the View Panel).    The button bar along the top and the View
Panel on the right can be turned off in the General mapper settings.

Beneath the main window is a status bar to display the name of the current room (currently
it is blank).    To the right are two pull-down boxes: the first shows the name of the current
zone (currently untitled) and lets you edit the zone name and select a new zone; the second
pulldown list displays all the specially marked rooms and portals on the current map.   

The File menu allows you to manipulate your Master Map file.    A master map file is a list of
all of the zones that make up the complete map, along with their filenames.    Each zone is
stored as a separate file on the disk.    Think of a map zone the way you think of areas in the
MUD you play.    You have a zone for the main town, and a zone for each special area on the
MUD.    The names of these zones and the filenames associated with them are stored in your
Master Map.

Right now, a blank Master Map has been created for us, and a zone called untitled has been
created containing a single room shown in the middle of the map.

Walking around to create a map

The easiest way to create a map is to just start walking around.    Click on the main zMUD
window (if the map window disappears, select it again from the Windows menu, then click
the red Stick Pin icon in the upper left corner of the window to keep it on top of your other
windows).    From the main zMUD window, start entering direction commands (like north,
south, etc), or press the keys on the keypad to move in these directions.

If you enter the north command (or press the 8 key on the keypad), a new room will be
created to the north, and automatically linked to the previous room.    If you now go south,
you will be back where you started.    Move in a few directions to create some rooms.

If you try to move to a room where there isnt a line connecting the two, you will be asked if
you want to Link the two rooms.    If you click Yes, a line will be added linking the two rooms. 
If you click No, one room will be moved out of the way so that a new room can be inserted.   
Notice that when a room is moved, all the rooms connected to that room also move, and the
connecting lines are stretched.    You can manually move rooms using the Move function in
the Edit menu.    When you are connected to the MUD, the mapper will not ask you if you
want to Link two rooms.    Instead, the mapper will rely on the name of the room and its
description to determine if the rooms are identical or not.    This works in most cases, but
sometimes you will have to edit the mistakes that the mapper makes when it gets messed
up.

There is no hard-coded limit on the size of zones.    You can create a zone as big as you want

as long as it can fit in memory.

Selecting rooms

Now that you have some rooms on the screen, left-click on one of the rooms.    Notice that
the red border moves to select the room you clicked on, but the blue dot remains where it
was.    The blue dot indicates your position on the MUD.    You can left-click on other rooms to
view them without disturbing your location.    However, if you right-click on a room, notice
that both the red selection box as well as your blue location move.    Right-clicking is useful if
the mapper gets confused about where you are (such as when you Flee a room) and you
need to tell it where you really are.

With a room selected, click the down-arrow button in the lower right corner of the window to
reveal the edit panel.    In the edit panel you can set lots of characteristics for the room you
selected.    You can enter its name and description (usually filled in automatically for you
when you are online), enter Notes about the room, and control many advanced settings.   
For now, close the edit panel by clicking on the arrow button again (now it is an up-arrow).   
This will collapse the edit panel and hide it again.

Speedwalking on the map

To automatically speedwalk to any location on the map, simply double-left-click on the
desired location.    The commands needed for the shortest possible path to that destination
will be displayed in your main window, and your location on the map will immediately
update.

When you are connected online, the map position is only updated when the name of each
room along the path is displayed by the MUD.    If you havnt filled in the names of the rooms,
you will not be able to speedwalk with the mapper.    Also, you cannot speedwalk from one
zone to another.    You can only speedwalk within the current zone (this is because only one
zone is kept in memory at a time).

Instead of speedwalking by double-clicking on the map, you can also mark a location on the
map, give it a name, then speedwalk to that named location from anywhere else in the zone.
To do this, select the room you want to name by left-clicking on it.    Expand the edit panel by
clicking the down-arrow in the lower right corner.    In the box for the short room name, enter
a short name (such as temple).    Then close the edit panel.    Click the right-most pull-down
arrow along the status panel.    You should now see a list with one item (called temple).    If
you select this item with the mouse you will automatically speedwalk to the room you
marked no matter where you were in the zone.

In addition to named rooms, exits to other zones will also be displayed in this list so that you
can more easily walk from zone to zone.

Going online

Now that you have played with the basic functions of the mapper, connect to your favorite
MUD and open tha automapper from the Window menu.    Make sure your mapper has been
configured as described in the previous help sections.

Again, a blank window showing a single room in the middle will be displayed.    The first thing
you need to do is capture the name and description of this room.    Click the button with the
picture of binoculars (the look button) on the mapper button bar.    This should send the look
command to the MUD and capture the name, descriptions, and room exits.    If someone
gossips or chats the moment you do this, the mapper might get confused.    Use the look

button again until you get the proper room name displayed in the status bar.    If this isnt
working then your mapper isnt configured properly, so return to the previous section to
configure it.

Now walk in a direction and youll see the room added to your map, and the room name,
description, and exits captured.    When you are initially creating your map, make sure that
there is a valid name for each room.    If the name gets captured improperly, click the look
button to update it.

Mapper modes

Those other buttons along the top button bar of the mapper window control the mode of the
automapper.    You are currently in Explore mode, which lets you create new rooms on the
map.    Once you have created your map you dont want to accidentally mess it up, so you
select the button labelled Track.    In Track mode, the map will track your position and show it
to you graphically on the map.    The next button to the left is Follow.    In Follow mode, your
location will still be followed by the mapper, but the map itself will not be shown.    Only the
room name in the status bar will be shown.    The next button to the left is Off which
collapses the mapper and turns it off.    When the map is off it doesnt not track your location. 
The button to the right of the Explore button is the Edit button.    This button automatically
expands the edit panel, and displays other buttons for moving rooms around, deleting them,
adding lines, etc.    These functions are covered in more detail in the Advanced Mapping
section.

Zooming

The Zoom panel contains buttons to manipulate the mapper display.    You can zoom in or
zoom out on the map, fit the map into the window, or select a default zoom setting.    There
are also arrow buttons to move up and down to view different levels.    Each level is a plane
of rooms that exists above and below other levels.    If a room on one level gets moved, any
rooms connected to it on other levels will move also.    Think of levels as a stack of paper
with the highest levels on top, and the lowest levels on the bottom.    You can renumber
levels using the Renumber function in the Edit menu.

Understanding Map Zones
A map zone is like an area on your MUD.    A zone can contain as many rooms on as many
different levels as you want.    Zones are linked together with special rooms called portals.   
When you enter a portal room on the map, the current zone is saved, and the zone linked to
by the portal is opened.

When you want to create a new zone, select the room you want to become the portal to the
new zone, and select Create Portal from the edit menu.    A list of current zones stored in the
Master Map will be displayed.   

Linking to Existing zones

You can create a portal to an existing zone by selecting the zone and clicking OK.    You will
then be asked to select the room in the other zone you want to link to.    Left click on the
desired room and a portal to that room will be created.

Linking to a New zone

From the zone list, you can also create a New Zone.    A blank zone will be created and the
portal to it will automatically be created.    A portal leading back to your original zone will
also be automatically created in the proper place.    You will be asked to name your new
zone.

Linking to a Template

Another powerful feature of the mapper is templates.    Many similar areas/zones exist on
different MUDs.    For example, many DIKU MUDs have an area called Thalos (or Old Thalos).   
You can take advantage of work done by someone else in creating a map by loading it as a
template.    From the zone list, select the New Zone from Template button.    You will first be
asked for the file containing the template (a template for Thalos is included in the zMUD
distribution).    Next, the template will be shown and you will be asked for a name for it.   
Then you will be asked for a new file to save the zone to.    Do not use the same name as the
template or you will overwrite and lose the template.    Then, the template will be shown and
you will be asked to select the room you want to link to by clicking on it.    When you do this
the portal to this new zone is created!    Template zones are specially marked so that the first
time you enter a room, the name and description from the template will be replaced by the
actual description from your MUD.    Keep in mind that areas on MUDs are similar, but rarely
exactly the same.    Use templates as a guide, but keep an eye out for changed.

Deleting a zone

From the zone list you can also delete a zone if you no longer want it or you want to recreate
it again.

Advanced Mapping
The mapper in zMUD is very powerful and can be used to recreate almost any area you
might encounter on a MUD.    However, the auto part of the mapper is fairly primitive and
easily confused.    For example, you will not be able to automatically map a maze on a MUD.   
However, using the advanced editing tools you can tweak your map.    Once you have it
correct it will prove very useful for navigating that maze in the future.

In order to explore all the editing functions, start working with an Empty window offline.   
This will allow us to focus on the editing functions and not on the MUD itself.

Select the Edit mode from the Mode menu.    This opens the edit panel and displays other
buttons in the speedbar.    Move around to create a few rooms on the map.

Moving rooms

You can move a room by selecting it, then pressing one of the arrow buttons in the top speed
bar.    Or, select the Move option from the Edit menu.    You can only move a room one square
at a time.    This is because of the complex algorithm used to move rooms that are
connected, or to move other rooms out of the way.    Play around with moving rooms till you
get the hang of it.

Moving a room away from another will stretch the line connecting them.    Moving a room on
top of another will ask you if you want to Merge the two rooms.    Merging two rooms makes
them into one single room.

You can also add rooms to the map by selecting the Add Room function from the Edit menu,
then clicking on the map where you want the room created.    Rooms can be deleted using
the Delete Room or Delete Link functions in the Edit menu.    The Delete Room function
removes the room, by leaves the links (described below).    The Delete Link function removes
the room and all associated links.    The Erase button on the button bar is assigned to the
Delete Room function.

Links

Links are used to connect rooms together.    There is a big distinction between links and the
lines you see on the map.    When a link is created, the proper lines are automatically added
to the map display.    However, the lines are for looks only and are not related to the actual
link between rooms.    Take a look at the links by clicking on the Link tab of the edit panel.   
In a compass rose diagram, each link is shown as a button.    On the button is the room
number that the link is connected to.    Click on various rooms on your map and you will see
the links displayed.    If you move the cursor over one of the link buttons, the actual name of
the room will be displayed if you are working online.

To add a link, click one of the link buttons, then click on the room you want to link to.    A
small line is added to the map to show the link, but you can link to any room on the map,
not just the rooms adjacent.    These links are the heart of the map and are used for
speedwalking and traveling on the map.    This is very important:    the lines on the map are
ignored, only the actual links are used.

To delete a link, click on the link button you want to delete, then right-click on the map, or
click on the Checkmark button in the status line.

You can also create unknown links.    Unknown links are used to specify a room in a particular

direction, but not which room it actually is.    These links are used by the mapper when the
exits of a room are automatically detected.    An unknown link is placed in each location so
you can keep track of which places you have been.    An unknown link is shown on a link
button as a question mark (?) and displayed on the map with a short line segment.    To
create an unknown link, click on the link button you want to change, then click on the
Question-mark button that is displayed in the status bar.

To delete a link, select the Delete Link function in the edit menu, then click on the line
segment on the map you want deleted.    Both the line segment and any links associated
with it are deleted.    If you select Delete Link and click on a room, the room and all its
connecting links are deleted.    Beware: there is no undo function currently in the mapper.   
Once you delete a room or link, it is gone.

Editing lines

Remember that line segments and links are different.    You can edit and add line segment
independently of the actual underlying room links.

You can add new lines to the map using the Add line function in the Edit menu (or the Line
button on the button bar).    If you then click on the map, a line segment will be added
(although it might not look like what you want yet).    If you want to add multiple lines, hold
down the Shift key when you click on the map and the Add Line function will remain
selected.

To edit a line segment to look the way you want, click on it.    In the edit panel, a box showing
a blow-up of the line segment will be shown.    You can click in this box to add or remove
segments from the line.    This lets you make corners, diagonals, and lines that bend.

There is one problem with lines you add manually:    if you start moving rooms around youll
notice that these lines dont generally move with the rooms.    The mapper has no knowledge
of connections when it comes to extra lines -- they are there just for looks.    Thus, you
should only add lines once your room layout is the way you want it.

One-way links

If you create a line segment next to a room and there is no link defined in that direction, a
one-way link is displayed.    This is just a visual indicator to help you understand that even
though there is a link there, it doesnt go anywhere.

Advanced Topics
zMUD is a very complex program.    The combination of triggers, variables, and aliases
combine to form a powerful event-driven programming language.    To enhance this language
are functions, introduced in this section.   

Also, zMUD isnt just for players.    It includes many features designed for world builders and
MUD coders.    One of these is the ANSI editor window which allows you to send more than
one line to the MUD, and imbed ANSI color sequences.

The following topics are covered in more detail:

Advanced Editing
Advanced Programming

Advanced Editing
In addition to the single line of input that you can send from the command input window,
zMUD contains a full-window ANSI editor for composing long messages.    To open this editor
window, select Editor from the Window menu, or press Ctrl-Enter.

The command editor works like most editors.    You can type text, use the arrow keys (or
mouse) to move around, cut, copy, and paste text within the editor, or copy text from the
MUD output window and paste it into the editor window.    Lines can be any length, and you
can use the scroll bars to display other parts of the window.    The size of the editor is the
same as the output window.    In the 16-bit version, this limit is 16,000 lines.

The menu in the editor window allows you to load text from a file, or save the current
contents to a file.    The Import command inserts a file at the current cursor position, rather
than replacing the buffer contents with the file.    The Send command sends the contents of
the editor to the MUD, and can also be activated by pressing Ctrl-Enter.    Using the Prefix
string to the right of the speed buttons, or by selecting Strings in the Options menu, you can
change the string of text that preceeds each line as it is send to the MUD.    You can also
change how blank lines are sent to the MUD.    Normally, each line is parsed for commands
before being sent to the MUD.    You can send the text verbatim by pressing the Parse
speedbutton to toggle command parsing.

The Capture command allows you to take the last N lines from the MUD output window and
insert them into the editor.    The #CAPTURE command can be used in triggers to send MUD
output to the editor window.    The Capture Toggle speed button can be used to turn off
capturing while you are editing.

In the Text menu, you can change the bold attribute, or the color of your text.    Standard
ANSI color sequences are used, and note that most MUDs filter ANSI sequences that you
send (although this might change when more people using zMUD demand this colorful
feature).    If you have defined a color syntax for your MUD, zMUD can convert the ANSI color
in this window to the color commands used by your MUD if the Color Syntax is enabled.

The buttons along the speedbar replicate the Open, Save, Capture, Send, Bold, Color,
Capture Toggle, and Parse toggle menu commands.    To close the window, select Close from
the File menu, or press <ESC>.

Note that the text is not only sent to the MUD, but it is also parsed and executed just as if
you entered it line by line into the single line buffer.    Thus, you can load a script from a text
file, and execute it using the Send command, or by pressing Ctrl-Enter.    If you turn off the
Parse option (using the speed button or menu command), then text will be sent to the MUD
verbatim - it will not be parsed for commands.    You can also edit the string that is sent as a
prefix to each line, and control what is sent in place of blank lines.

Advanced Programming
In the section on variables and triggers you learned the basics about programming in zMUD. 
However, zMUD is a powerful event-driven programming language, and you have barely
touched the surface of what is possible.    In this section, a more detailed explanation of
command parsing will be presented, and functions will be introduced.    If you fully
understand how zMUD parses its commands, you will find that zMUD is capable of doing
most anything you desire.

Command Syntax and Parsing
Every time you enter a command and press Enter, the command text is parsed.    This
parsing several steps:

break the input using the separator character (;) into individual commands
determine the focus of the command
execute the command

When commands are executed, the type of each parameter determines whether the
parameter will be expanded, evaluation, or left alone.    For nitty-gritty details of the zMUD
Programming syntax, read the zMUD Programming Language Manual on the web at
http://www.zuggsoft.com/zmud/prog.htm.

For example, the #VAR command takes a String parameter, which is expanded, so
#VAR temp 5 assigns the number 5 to the variable temp
#VAR hp {100/@temp}
#SHOW @hp displays 100/5
However, the #MATH command takes an Expression which is evaluated, so
#VAR temp 5 assigns the number 5 to the variable temp
#MATH hp 100/@temp
#SHOW @hp displays 20
The #FUNC command takes a Literal which is left alone, so
#VAR temp 5 assigns the number 5 to the variable temp
#FUNC hp 100/@temp
#SHOW @hp displays 100/@temp

One final word about parsing and variable expansion.    Normally, each variable must be
separated by spaces to allow proper parsing.    Thus, if the variable @a has the value test,
you must normally say @a ing to get @a to expand.    If you say @aing zMUD looks for a
variable called aing.    You can use the curly braces {} to surround the name of the variable
to solve this problem.    Thus, @{a}ing expands to testing.

You can use the above syntax to perform indirect variable addressing.    Lets say that the
variable @b has the value a.    Refering to @{@b} expands the value of @b, resulting in
@{a} which expands to test.

If you ever want to use one of the special zMUD characters like @ or %, you can use the tilde
character (~) to quote the special character.    Thus, zugg~@zuggsoft.com would tell zMUD
not to interpret @ as a variable character.    To actually use a tilde character, use two of
them.

Functions

In addition to variables, zMUD allows you to define functions.    Think of functions as
variables with parameters.    Parameters are used much like they are with aliases, except
that since they are expanded within a command string, the syntax for calling a function is a

bit different.

You declare functions just like variables, using the #VARIABLE command.    However, in the
definition of the function, you can use %1, %2, etc to refer to parameters to be supplied by
the caller.    For example, #VARIABLE kk {kill %1;stun %1} defines a function called @kk that
takes one parameter.    You expand and execute this function by using the @ character in
front of the function name, then put the required parameters in parenthesis (much like in a
programming language).    Thus @kk(zombie) will expand to kill zombie;stun zombie.    Recall
that this is similar to the kk alias that we defined in the Introduction to Aliases section, but
unlike aliases, functions are expanded during the parsing phase anywhere in the command,
rather than performed at the execution phase.

To add more power to zMUD, several predefined functions are supplied.    They provide the
tools necessary for some very powerful trigger processing.    By using the predefined
functions in combinations with your own functions, the sky is the limit!

Predefined Functions
The following functions are defined within zMUD:

%abs(i) return the absolute value of I
%additem(s,list) add the string s to the specified string list
%alias(s) expand the value of alias s
%ansi(fore,back) return the ANSI codes for the given colors
%begins(s1,s2) true if s1 starts with s2
%btncol(button,back,fore) change the color of a button
%btnimage(button,filename) change the image assigned to a button
%case(i,s1,s2,s3...) if I=1, return s1, if I=2, return s2, etc.    Up to 8 strings can be given
%char(i) return the ASCII character associated with the number I.    This

function is also used to translate the system characters (;:@%!.)to
their current values if they have been changed.

%color(fore,back) converts a descriptive color into an attribute value
%concat(s1,s2,s3..)return all strings concatenated together (up to nine parameters)
%copy(s,i,n) return a portion of string s, starting at character position I, and

returning n characters
%ddeopen(serv,topic) open a DDE connection to the specified server and topic
%ddeclose close a DDE connection
%dde(serv,topic,item) fetch data from a dde server
%ddemacro(serv,topic,s) tell the specified dde server to execute the macro in s
%ddepoke(serv,topic,item,value) poke the data in value to a dde server
%delete(p,i,n) return the string s with n characters starting at position I deleted.
%delitem(s,list) delete item s from the given string list
%ends(s1,s2) true if s1 ends with s2
%exec(s) executes arguments as commands and returns results separated by

| character
%expand(s) expand variables and functions with the string s
%eval(p) evaluate parameter p as an expression and return the result
%format(f,a,b,c,d...) use a format string to format the values of a,b,c, etc.    Format

strings consist of a string of characters, with special format
specifiers of the type %w.dx where w is the width of the field, d is
the number of decimal places, and x is the format type.    Format
types for x include: s for string, n for number (commas every 3
digits), f for floating point, m for money (currency).

%getglobal(name) return the value of global variable name (stored in the INI file)
%grep(i,s) search the ith file and return lines that match the pattern in s
%if(expression,true-value,false-value) if expression is true, return the true-value

otherwise return the false-value
%insert(p,s,i) return the string s with pattern p inserted at position I.
%ismember(s,list) return true if s is a member of the given string list
%isnumber(s) true if s represents a valid number
%left(s,n) return the leftmost n characters of the string s
%leftback(s,n) return the leftmost part of s, n characters from the end
%len(s) return the length of the string s
%lower(s) return the string s in lowercase
%max(a,b,c,d...) return the maximum value of the parameters
%min(a,b,c,d...) return the minimum value of the parameters
%mod(a,b) return a modulus b
%null(s) return true if s is the null string
%numwords(s,d) return the number of words in string s, delimited by string d (if d is

missing, a space is used as the word delimiter)
%number(s) convert a string to a number

%pick(s1,s2,s3,...) display a picklist and let the user choose one or more strings from
the list.    If more than one are chosen, they are returned separated
by |.    See #PICK for more options

%pos(p,s) return the position of pattern p in string s.    Return 0/false if not
found

%proper(s) convert s to proper case (lowercase except for first letter)
%prompt(v,p) prompt the user for a value for the variable v.    If p is present, use

password mode so that the value entered by the user is not
echoed.

%random(i,j) return a random integer >= I and <= J.    If J is omitted, then I
specifies the maximum value, and 0 is used as the minimum value.

%read(i,rec) read the specified record from the ith file.    If rec is omitted, zero is
assumed.    For text files, rec is the line number to be read (0 reads
the next sequential line).

%remove(p,s) Remove substring p from string s
%repeat(s,n) return s repeated n times
%replace(s,p,r) return s with all occurrences of p replaced with r
%right(s,n) return the rightmost part of s following n characters
%rightback(s,n) return the rightmost n characters of the string s.
%setglobal(name,value) set the value of the global variable name (stored in the

INI file)
%time(format) return the current date/time.    If format is nil (or missing), a long

format is used.    Otherwise, use characters such as dd, mm, mmm,
yy, hh, mm, ss, etc in the format string to return that part of the
current date/time

%trigger(class) return true if the specified trigger class is enabled
%trim(s) trim spaces from beginning and end of s
%trimleft(s) trim leading spaces from s
%trimright(s) trim trailing spaces from s
%upper(s) return the string s in uppercase
%word(s,i,d) return the ith word of string s, delimited by string d (if d is missing,

a space is used as the word delimiter
%write(i,s,rec) write string s to the ith file at record rec.    For text files, rec is

ignored and s is appended to the file.    If rec is 0, s is written to the
end of the file.

%yesno(s) Displays question in string s and returns true or false depending
upon which button is clicked. See #YESNO for more options.    If
more than two buttons are displayed, the result is the button
number, making this useful in conjunction with #CASE.    With only
two buttons, 0 or 1 is returned, making this useful in conjunction
with #IF.

The following functions are defined to access the data in the mapper.    Items in brackets []
are optional.    If the room or zone parameters are omitted (or set to) then the current room
or zone is used.    Whenever a parameter specifies the room number, the ID (short name) of
the room can be used instead.

%roomname(room, [s]) Return or set the name of the room to string s
%roomdesc(room, [s]) Return or set the description of the room to string s
%roomnum(room) Returns the number of a room
%roomid(room, [s]) Return or set the short name (ID) of the room to string s
%roomcom(room, [s]) Return or set the command assigned to the room to string s
%roomnote(room, [s]) Return or set the Notes of the room to string s
%roomexit(room, [s]) Return or set the exit string of the room to string s.    The exit

string is a string list, with each direction seperated by |
%roomobj(room, [i]) Return or set the number of objects in the room to i

%roommob(room, [i]) Return or set the number of mobs in the room to i
%roomcost(room, [i]) Return or set the cost of entering a room to i
%roomkind(room, [i]) Return or set the type of the room to i.    0 = normal, 1 = water,

2 = fly, 3 = trap.    Add 128 to set Do Not Enter flag.
%roomflag(room, [i]) Return or set the Reload flag of the room to i (0 = false, 1 =

true)
%roomlink(room, dir, [i]) Return or set the link in direction dir to the room number

i.    To delete a link, i=-1, for an unknown link, i=-2
%roomportal(room, s, [i], [z]) Return or set a non-standard exit (portal).    Assign the

room number i and zone number z to the non-standard exit string
of s.

%numrooms() Return the number of rooms in the current zone
%numzones() Return the number of zones in the map
%parsemode(I) returns or sets the current mapper parse mode.    I=0 is Full, I=1 is

Brief, and I=2 is Look.
%walk(i) Return the speedwalk string needed to get to room i
%zonename(zone, [s])Return or set the name of the zone to string s
%zonenum(zone) Return the number of a zone

Menu Reference
Click on the menu command that you want help on.   

File
Connection Wizard display master list of MUDs
Another char connect to a new character or host
Reconnect re-establish connection to current character
Disconnect disconnect from the current session
New Log open a new log file
Append Log append to an existing log file
Log toggle logging state
Print Setup setup the current printer
Print print the current screen, buffer, or selection.    You can also

toggle color or B&W.
Exit disconnect from MUD and leave the program

Edit
Cut cut text from the input command line
Copy copy selected text from the input command line
Paste paste text into the command line
Select All select the entire contents of the command line
Clear clear contents of command line
Find search for a string in the scrollback buffer

View
Preferences View/edit General, colors, fonts, sounds, special characters,

and memory settings.
Aliases View/edit Alias settings
Variables View/edit Variable settings
Triggers View/edit Trigger settings
Macro keys View/edit Macro key settings
Buttons View/edit Button settings
Tab Completion View/edit tab completion words
Speed Menu View/edit speed menu settings
Speed Walking View/edit speedwalking paths
Directions View/edit speedwalking directions

Settings
New clear all settings
Load load settings from a file
Save save settings to a file
Save As save settings to a different file
Import allows you to import ASCII script files, or TINTIN++ script

files
Export Allows you to export macros, aliases, triggers, etc in ASCII

format for later importing.
Parse toggle parsing of command line

Actions
Make Alias create an alias
Make Trigger create a trigger action
Define Keys assign a command to a key
Make Button create a new button
Add Tab Word add word to tab completion list
Speedwalking manipulate paths and control speed walking
Timer manipulate the tick timer
Synch Timer resynch the tick timer

Define Status bar edit the status bar and status window settings
Window

Tile Tile all windows so you can see them all
Cascade Place all windows on top of each other
Arrange arrange the minimized windows at the bottom of the screen
Freeze split output window to view scrollback
Refresh redraw the current window
Clear erase the screen (but maintain the scrollback)
Empty clear the scrollback buffer and reclaim memory
Command Buffer open the full-window command editor
History display the command history
Status display the status window
Automapper display the automapper window

Help
Contents show table of contents
Search search the online help database
Reference display command reference
Getting Started display the Getting Started help section
Command Wizard get help and examples of zmud commands
Function Wizard get help and examples of zmud functions
Startup Screen display the initial welcome dialog
Send Feedback send feedback to the author of zMUD
Register enter your registration code for the Shareware version
About version, credits, and copyright info

Reconnect
Allows you to quickly reconnect to your current MUD session.    The network link to the MUD
is dropped, and then zMUD immediately tries to reconnect.    If the MUD cannot be
connected, a retry dialog is displayed showing a 10 second countdown.    At the end of this
10 seconds, a reconnection is attempted again.    You can cancel the reconnection attempt
by clicking the Cancel button.    You can force it to try again without waiting for 10 seconds
by clicking the Retry button.

This is a great function to use after a MUD reboot to ensure that you get connected as
quickly as possible.

zMUD will not allow you to change this 10 second delay.    If all players using zMUD were able
to attempt reconnects continuously, it would bring the poor MUD server that is trying to
reboot to its knees and upset a lot of system administrators.

Make Alias
You are prompted to name an alias created from the following text:

any highlighted text in output window
any highlighted text in command line
entire contents of command line

Note that any expansion of variables is delayed so that two variable characters are not
needed.

Make Trigger
You are prompted for the commands to be assigned to the pattern.    The pattern is taken
from any highlighted text in output window

Note that any expansion of variables is delayed so that two variable characters are not
needed.

Add Tab Word
Adds a word to the tab completion list.    The word is taken from

any highlighted text in the output window
any highlighted text in the command line
last word in the command line

Save Path
You are prompted for a name for the currently recorded path.    Note that the Movement
character (.) at the beginning of the path name is optional and will be added for you.

Run Path
A drop-down list of saved paths is displayed.    Click the down-arrow icon to drop-down the
list, and click on the path you wish to run.    Then click OK to run the path.    You can also
double-click the path name to run it.    Click Cancel to abort.

Reverse Path
A drop-down list of saved paths is displayed.    Click the down-arrow icon to drop-down the
list, and click on the path you wish to run.    Then click OK to run the path.    You can also
double-click the path name to run it.    Click Cancel to abort.

Note that the path will be run in reverse to allow you to retrace your steps.

Command Help
You can get help on the command currently in the command line by selecting this function.   
You can also press Control-H or F1 (as long as you have not assigned any macros to those
keys).

Speedwalking Dialog
This dialog allows you to manipulate all speedwalking and path commands.    On the left is a
list of all defined paths.    Click on a path to move its definition into the Path Ahead field.   
The directions in the Path Ahead field are those that will be sent by the walking commands.   
The directions in the Path Behind field are those that have already been sent or recorded.

The Speed Walk button will send the directions in the Path Ahead field to the MUD quickly.   
Once sent, there is no way to abort them.    The Slow Walk button sends the first direction in
the Path Ahead field, then waits for confirmation from the MUD that the move was
successful.    These confirmation triggers can be set by clicking on the Settings tab.    There is
also a timer that can be set to abort the Slow Walk if it times out.    Once confirmed, the next
direction is sent, then another wait for confirmation occurs.    This combination of sending a
direction, then waiting for confirmation is continued till no more directions are in the Path
Ahead buffer.

While Slow Walking is active, a Stop button will appear that lets you abort the Slow Walk
process.    The Step button moves one step in the next direction held in the Path Ahead
buffer.    The Backup button moves backwards one step, effectively undoing the last direction
stored in the Path Behind buffer.    The Turn Around button reverses the Path Ahead and Path
Behind buffers.

Finally, the Start Recording button is used to start recording directions into the Path Behind
buffer.    The Stop Recording button terminates a recording and prompts you to save the
directions in the Path Behind buffer to a named path.

Timer Dialog
This dialog allows you to easily manipulate the tick timer commands in zMUD.    The current
value of the timer (counting down to zero) is shown on the right.    The timer can be started
and stopped using the Start and Stop buttons.    The Synch button is used when a tick on the
MUD actually occurs.    The current tick interval will be modified to reflect the actual tick on
the MUD.    Note that most tick intervals vary depending upon the lag on the MUD, so dont
think this timer will save your life or anything.    The Reset button resets the timer back to
the tick interval.

The Tick interval can be set from this dialog to a given number of seconds.    The Timeout
Margin indicates the point at which the Timeout Command is executed.    For example, if the
Margin is 5, the Command will be executed when the timer reaches 5 seconds.

Command Example
You can get an example of how to use the command currently in the command line by
selecting this function.    You can also press ALT-F1 (as long as you have not assigned any
macros to this key).

Command Reference
Each command should be preceeded by the Command character.    The default command
character is # but can be changed in the Preferences dialog.    You can abbreviate each
command using the letters shown in boldface.

[number] repeat following text [number] times
AB ORT abort further parsing of the current command line
AC TION create or display a trigger action
AD D add a value to a variable
ALA RM create an alarm trigger
AL IAS create or display an alias
ALL send a command to all windows
BA CKUP remove last direction from current path
BE EP beep the speaker (or play a wave file)
BU TTON trigger a button
C+ start capturing to a window
C- stop capturing to a window
CAP TURE capture lines and send them to the editor or a window
CA SE select a command from a list
CH ARACTER returns the name of your character
CL OSE close a file
CLR clear the screen
CO LOR change color of the last line of text
CON NECT reconnect to the current session
CR send a new line
CW color the matched word on the last line
DDE send a DDE macro to a server.
DE FAULT save special characters and reset them to defaults
DI SCONNECT disconnect from the current session
EC HO echo string to current MUD window
ERA SE erase a file from the disk
EXEC execute a command
FI LE open a file for reading and writing
FIN D find current location on map
FO RALL loop through a string list and execute command for each item
FR EEZE split the screen to view scrollback
GA G remove last line from screen
HE LP get help on commands
H+ retrieve the next command in the history buffer
H- retrieve the previous command in the history buffer
HIS TORY display the history of previous commands
HI GHLIGHT highlight the last line of text
HO ST return the name of the current host
IF perform a conditional test
IG NORE toggle the processing of trigger actions
IN PUT put text into the command buffer
KE Y define a macro key
KILLALL delete all aliases, macros, trigger actions, tab-completion words
LM AP loop through rooms on the map
LOA D load a settings file
LOOK reload description of current room on map
LOO P execute command several times in a loop
LO G start a log file or toggle logging
MAP add a direction to the current path

MAT H perform complex math and expression parsing
MA RK mark the beginning of a path
ME DIA send commands to your multimedia device
MEM ORY display the remaining memory
MEN U execute a menu command
MES SAGE display a message in a small window
NA ME change the name of the current window
NO OP nothing
NOD EF restore special chars saved with #DEF
NOMAP prevent the matched line from being parsed by the mapper
OK confirm a Slow Walk step
PA TH save or display the current path
PI CK select commands from a list
PL AY play a wave, midi, avi, cd player, or other multimedia
PR OMPT prompt for the value of an alias/variable
PW return your current password
REA D read and execute a script from a file, or read a record from a file
RECALL teleport to recall location on map
REC ORD record an alias
RES ET reset the file back to the beginning.
RE TRACE retrace a path
SA Y echo text to the screen
SAV E save the current settings file
SC ROLL display matching lines in scrollback buffer
SE ND send a text file to the MUD prefixed by a command
SES SION open a new session
SH OW echo text to the screen
SL OW execute a path in Slow Walk mode
ST ATUS set the definition of the status bar
STE P resume an aborted Slow Walk and step ahead
STO P abort a Slow Walk
STW set status window definition
T+ turn on a class of triggers
T- turn off a class of triggers
T? display time remaining in timer
TA B add word to tab completion list
TE LEPORT teleport to a location on the map
TI MER toggle the timer
TR IGGER create or display a trigger action
TS set the time or origin of the timer
TY PE display all or part of a text file to the screen
TZ zero the tick timer
UNA LIAS remove an alias
UNG AG prevent the line from being gagged
UNK EY remove a macro key
UNT RIGGER remove a trigger
UNV AR remove a variable
UN TIL execute commands until expression is true
URL open URL in your Web Browser
VA RIABLE assign a value to a variable
VE RSION display the current version of zMUD
VERB ATIM toggle parse mode
WA IT delay further processing until next line is received
WAL K speedwalk to a marked location on the map
WH ILE execute command while expression is true

WIN DOW open a new window
WI ZLIST display the credits for zMUD
WR AP set word wrapping
WRI TE write a record to a file
YE SNO Display a confirmation dialog with buttons

Preferences
The Preferences dialog is accessed via the Edit command in the Settings menu and allows
you to change all of the parameters stored in a zMUD settings file.    This settings file is
associated with your MUD character in the Character database.

Select the tab of the dialog that you want help on:

General change miscellaneous parameters
Special Characters allows you to change the special characters used by zMUD
Memory allows you to monitor and change scrollback and editor memory

usage.

Preferences
This dialog allows you to change some of the general system settings.   

General Settings

ANSI Color toggle whether the window interprets ANSI color commands
Word Wrap toggle word wrapping at the window border.    Lines without spaces

are not wrapped.    You can specify the specific column to wrap at,
or select Auto Wrap to automatically track the width of the window.

Auto Clear Input Normally, when you send a command to the MUD, the text is
highlighted so that you can type over it, or press Return to send it
again.    If this flag is on, the command buffer is always cleared after
you send a command.

Show Triggers turns on verbose debugging information to show the details of
trigger processing

Echo Commands if on, commands sent from the input window are also echoed to the
output window using the current command color

Connection Timerenables or disables the tracking of connect time and display of the
connection timer.

Help Balloons toggles the help messages that popup when the cursor is moved
over various buttons.

Speed buttons toggle the display of speed buttons along the top of the zMUD
window.

Auto NumLock determines whether NumLock is automatically enabled when zMUD
is started.    Should be disabled on laptops without a keypad.

a = b syntax If off, the var = value syntax is disabled allowing you to use the =
character for your MUD.

Gag Password If enabled, zMUD does not display any line that contains your
password.

Clock Enables or disables the clock in the command line
Window Tabs Enables or disables the window bar shown when multiple windows

are open
Clean Scrolling allows zMUD to properly scroll while other windows obscure the

zMUD window, however this slows down zMUD scrolling
Capture Commands If on, commands echoed from the command line are captured

by the #C+ command.   
Auto reconnect Toggle the display of the reconnect dialog when you are

disconnected from a MUD.
Spam Count number of times you can safely repeat the same command without

being flagged a spammer
Spam Length ignore commands with this length or less in the spam count
Spam Command command to insert after you have repeated another command

Spam Count times
Tick Interval current timer interval
Scroll Amount determines how often zMUD updates the screen.    If set to zero,

zMUD only updates the screen when no text is being received from
the MUD.    This is the fastest setting, but you may miss text
scrolled of the screen.    If set non-zero, it indicates after how many
lines received from the MUD to update the screen.    The default is
5.

Tab Limit Controls the minimize size of words remembered by the dynamic
tab completion.    Words smaller than this amount are ignored.

Special Characters

Special characters are used by the zMUD parser to control various functions.    You can
disable parsing using the Parse option in the Setting menu, or you can change the special
characters.    You can also individually disable each special character function by unchecking
it.

Command Char character used to begin a command.    Default is #
Separator Char character used to separate multiple commands on a single line.   

Default is ;
Variable Char character used to preceed a variable.    Default is @
Parameter Char character used to preceed a parameter reference.    Default is %
Movement Char character used to begin a path variable or command.    Default is .
History Char character used to recall a command from the history buffer.   

Default is !
Focus Char character used to specify the window that will receive the

command.    Default is :

Click OK to save your changes.    Click Cancel to abort.    Click Help to display this help
screen.

Macro Keys
This dialog allows you to view and edit all of your macro keys.    In the main list is each
macro, with the name of the key shown to the left, and the command assigned shown to the
right.    Click on a key definition, and the key value is copied into the Key field, and the
command is copied into the Macro field.    You can then edit the command by editing the
Macro field, or change the key by clicking the Key button and pressing the new key
combination.

To create a new macro, click the New button.    To delete the currently selected macro, click
the Delete key.    You can copy the selected macro using the Copy button.    Close the dialog
by clicking the OK button.    Display this help screen by clicking the Help button.

Along the top is the standard Preferences banner containing a menu bar to select other
Preferences dialogs, and a stick-pin button that can be used to keep this dialog at the top of
the screen when pressed in.    The position of this dialog and the status of the stick button
are stored in your ZMUD.INI file.

Aliases
This dialog allows you to view and edit all of your aliases.    In the main list is each alias, with
the name of the alias shown to the left, and the command assigned shown to the right.   
Click on an alias, and the shortcut name is copied into the Alias field, and the command is
copied into the Command field.    You can then edit the command by editing the Command
field, or change name of the alias by editing the Alias field.

To create a new alias, click the New button.    To delete the currently selected alias, click the
Delete key.    To make a copy of the selected alias, click the Copy button.    Close the dialog
by clicking the OK button.    Display this help screen by clicking the Help button.

Along the top is the standard Preferences banner containing a menu bar to select other
Preferences dialogs, and a stick-pin button that can be used to keep this dialog at the top of
the screen when pressed in.    The position of this dialog and the status of the stick button
are stored in your ZMUD.INI file.

Triggers
This dialog allows you to view and edit all of your triggers.    In the main list is each trigger,
with the pattern shown to the left, and the command assigned shown to the right.    Click on
a trigger, and the class name is copied to the Name field, the pattern is copied to the
Pattern field, and the command is copied to the Command field.    You can then edit any of
these fields as desired.

To create a new trigger, click the New button.    To delete the currently selected trigger, click
the Delete key.    To make a copy of the selected trigger, click the Copy button.    Close the
dialog by clicking the OK button.    Display this help screen by clicking the Help button.

The Enable Class button is used to enable all triggers with the class name listed in the Class
field.    The Disable Class button is used to disable all triggers with this class name. The
Enable/Disable button enables or disables just the current trigger.    This is also reflected with
a check mark next to the trigger in the list on the left, and can also be toggled by double-
clicking on the trigger in the list on the left.

The Enabled at Init box determines whether this trigger is automatically enabled when the
settings file is loaded.

The Trigger on CR box determines whether the pattern for this trigger is checked after each
line is received from the MUD, or whether it is only checked after a block of text is received.   
You will normally leave this box checked.    However, when triggering on text that is not
followed by a newline (such as username or password prompts), you should deselect this
option.

At the bottom of the screen is a test area.    You can enter a string of text that might be sent
by the MUD and click the Test button to see if the current trigger will fire.    The values of any
parameters extracted from the text will also be shown.    Note that zMUD will automatically
create a test pattern for you based upon what you enter in the Pattern field.    To prevent
this, click the Lock button to the left of the test pattern.

Along the top is the standard Preferences banner containing a menu bar to select other
Preferences dialogs, and a stick-pin button that can be used to keep this dialog at the top of
the screen when pressed in.    The position of this dialog and the status of the stick button
are stored in your ZMUD.INI file.

Directions
This dialog allows you to view and edit all of your direction definitions.    These definitions are
used in conjunction with the path features.    In the main list is each direction, with the
character defining the direction shown to the left, and the typed commands for the direction
shown to the right.    Click on a direction, and the defining character is copied into the Char
field, the typed command is copied into the Input field, and the character used to reverse
the direction is copied into the Reverse Char field.    You can then edit these fields as desired.

If you want more than one command to trigger the given direction, separate the multiple
commands with a vertical bar (|).    For example, if you want the commands n and north and
nor to trigger the n direction, put n|north|nor in the Input field.

Tip:    Sometimes you need to open a door while executing a path.    To do this, define a new
direction with the character o in both the Char and Reverse Char fields, and then put open
door in the Input Field.    Now when you are recording a path and you enter open door, the
character o will be added to the path.

Tip 2:    Some MUDs use the directions ne, nw, se, sw.    The paths can only contain a single
character for each directions.    Thus, make some up.    For example, create a direction with a
Char of q and a Reverse Char of r and put ne in the Input field.    Then create another
direction with a Char of r and a Reverse Char of q with sw in the Input field.

To create a new direction, click the New button.    To delete the currently selected direction,
click the Delete key.    To make a copy of the current direction, click the Copy button.    Close
the dialog by clicking the OK button.    Display this help screen by clicking the Help button.

Tab Completion
The Tab Completion dialog shows all of the words that can be completed automatically by
enter the first few characters in the command line and pressing <TAB>.    Aliases and
variables are automatically expanded.    To expand any other text you must add it to the tab
completion list shown here.    The box on the left is fully editable.    To add a new word, click
in the box and begin typing the word, ensuring that it is on a line by itself.    To delete a word,
use the <Backspace> key or key to remove the word.    This box acts like a regular
text editor.

To save your changes to the tab list, click the OK button.    To cancel your changes and close
the dialog, click the Cancel button.    You can load any text file into this list using the Load
button.    You can also save this list to a text file using the SaveAs button.    The Help button
displays this help screen.

Dynamic Tab Completion

A second type of tab completion is used with the Shift-<TAB> key.    The last word larger
than the Tab Limit (in the Preferences) that was last displayed in the output window that
starts with the last character in the command line is recalled into the command line.    For
example, if someone with a really complicated name such as Xenafragilicious talks to you,
you can enter the X character into the command line and press Shift-<TAB> to recall the
entire word.

Sounds
This dialog allows you to enable or disable sound in zMUD.    Also, you can select the sound
played by the #BEEP command, and played when you start zMUD.    In the input boxes, you
can specify the name of a WAV file, or can enter the numeric value of the window event you
wish to trigger.    Window event 0 is the standard beep sound.    Other sounds occur at 16, 32,
48, 64, etc.
These values are stored in the ZMUD.INI file and effect all windows.

In this dialog you can also enable or disable sounds support.    Also, if you are having trouble
with the sound support in zMUD, you can put the line Sound = 0 in the [Settings] section of
your ZMUD.INI file.   

You also specify the sounds used for connection and disconnection from the MUD in this
dialog.

Fonts
This dialog allows you to change the command input font, or the output font of the current
window.    The default font is Courier 10pt.    Note that zMUD does not perform wordwrapping
properly if you select a font that is not fixed-pitch, or in which the bold font has a different
size than the regular font.    Courier has this problem, for example, so bold text doesnt word
wrap properly.    True-type fonts work better, but Courier was chosen over Courier New
because more lines can be fit on the screen, and there is better compatibility with Windows
3.1.

To change the font, just click on either the input or output box.    A standard Windows font
change dialog box will be shown.    Select the desired font and size and click OK to save your
change.    Changes to fonts take effect immediately.    Note that style changes (bold/italic) to
the Input font are currently ignored.

Colors
The system tab displays the colors used for zMUD for various text.    To edit one of these text
colors, click the button to the right of the sample text and select the foreground and
background colors from the dialog.

The Foreground tab allows you to specify the foreground color displayed for the 16 ANSI
color values. The actually color displayed by each color index is shown in the boxes on the
screen.    Click on one of these boxes to change the actual color.    This allows you to take full
advantage of all the colors of your video card.    Buttons are provided to set all of these
colors to either normal (dim) or bright colors.    The upper 8 colors are only used if you select
the Use Highlight Color option on the right, otherwise the Bold font is used rather than the
upper colors.

The Background tab is similar to the Foreground in that it lets you specify the mapping for
the 8 background ANSI colors.

The Syntax tab allows you to enter a color syntax command language used by your MUD.   
Some MUDs have special ways that you can change the color of your tell and gossip
commands.    Next to each color, enter the letter or number used by your MUD to represent
that color.    Then, in the command sections on the right, enter the syntax used by your MUD
and use F to represent the code of the foreground color, and B for the code of the
background color.    Also enter the syntax used by your MUD to return to the default color.   
This syntax, if enabled, is used to translate copied color text from the output window into
the command line, and for text sent from the Command editor.

In the Window tab you can control the look of the background window.    The background
window can be a solid color, or a bitmap texture.    If you disable the Use Bitmap option, the
color shown will be the solid background color (you change it by clicking on the color box).   
If you enable textures, then the bitmap specified will be used for the background.    If you
leave the name of the BMP filename blank, the internal marble texture will be used.    A
sample of the texture is shown below the name of the BMP file.    Changes to background
color or texture do not take effect until you restart zMUD.

Slow Walking
This dialog allows you to control the settings use to perform Slow Walking.    On the left is a
list of patterns received from the MUD that should confirm a successful Slow Walk step.   
These are turned into trigger automatically for you.

For example, a common setting is ^Exits which is usually displayed by the MUD at the
bottom of a room description.   

On the right you can control the Slow Walk timer.    Its value is set in milliseconds (e.g. 5000
is 5 seconds).    If enabled, a timeout will terminate a Slow Walk.    If enabled, the step is
automatically confirmed.

ACTION
Syntax: #AC pattern command [classname]
Related: #TRIGGER #T+ #T- #IGNORE
Example

This is one of the most powerful features of zMUD.    It allows you to define a command to be
executed whenever the matching text is received from the MUD.   

The first parameter is the text to be matched.    If the text contains a space, you need to
enclose it in quotes.    This pattern can contain special pattern matching symbols and
wildcards.    The second parameter is the command to be executed when the pattern is
received from the MUD.    Since this command usually consists of more than one word, you
must enclose it in quotes.    The third parameter is optional, and is the name of the trigger
action class that this action is part of.    Triggers can be enabled and disabled when part of a
class.

For advanced trigger options, you must go to the Preferences dialog.    In this dialog, you can
determine whether the action is triggered at the end of each line received from the MUD, or
if it is just triggered at the end of receiving a block of data from the MUD.    Responding to
MUD prompts such as Username and Password require a trigger that activates after a block
of text is received since these prompts are not normally followed by a newline.

In the Preferences dialog you can also determine whether the trigger action is enabled when
you first load the data file.    You can also individually enable or disable triggers individually
as well as by class name.

Pattern Matching
Patterns can contain several special character for wild-card matching.

* match any number of characters or white space
? match a single character
%d match any number of digits (0-9)
%w match any number of alpha characters (a-z) (a word)
%a match any number of alphanumeric characters (a-z,0-9)
%s match any amount of white space (spaces, tabs)
%x match any amount of non-white space
[range] match any amount of characters listed in range
^ force pattern to match starting at the beginning of the line
$ force pattern to match ending at the end of the line
(pattern) save the matched pattern in a parameter %1 though %9
~ quote the next character to prevent it to be interpreted as a wild card.
{val1|val2|val3|...} match any of the specified strings
{^string} do not match the specified string

In specifying a range, you can list specific characters such as [abc] or you can use a range
[a-c].    To use a wild card character in the string itself, preceed the special character with the
~ quote character.    For example, the pattern ~[test~] will match the string [test] rather
than being interpreted as a range wild-card pattern.    Note that the quote character can be
changed in the Preferences section.

To match a blank line, use the $ pattern by itself.

You can also include variables in your pattern, and the name of the variable will be replaced
with its value before the pattern match is performed.

ABORT
Syntax: #AB
Example

Aborts the processing of the current command line.

ABORT example
get all corpse;#ABORT;split
OK, this is somewhat contrived, but the command get all corpse is sent, then the #ABORT
stops further processing so that the split command is ignored..

ACTION example
A simple trigger action
#AC {chats} {#COLOR red}
whenever a line containing the word chat is received, the color of the line is changed to red.

Triggers for automatic logins
#AC {^Username:} {#CH}
#AC {^Password:} {#PW}
In the Preferences dialog, turn off the Trigger on Newline option and turn on the Trigger on
Prompt so that these macros dont wait for a newline character.    Note that the ^ character
at the beginning of each pattern forces them to match the beginning of a line.

Parameters in triggers
#AC {^You get (%d) coins} {split %1} autosplit
Whenever you see a line like You get [number] coins the number of coins is stored in the %1
parameter.    The command then uses this value to split the coins among the party members.
A class name of autoplit is used so that you can enable and disable the trigger using the T+
and T- commands.

ALIAS
Syntax: #AL [aliasname] [string]
Related: #VARIABLE
Example

Assign the command string to the shortcut aliasname.    Variables in string are expanded
when the ALIAS command is executed.    To delay expansion of variables, use two variable
characters.   

If ALIAS is used with no parameters, all aliases are listed to the output window.    If ALIAS is
given a single parameter, the definition of aliasname will be displayed.

Aliases can also be expanded via tab completion.    If the aliasname is entered into the
command line and <TAB> is pressed, the aliasname will be replaced with the string
assigned to that alias.

Text following the aliasname in the command line is stored in parameters.    These
parameters %1 through %99 can be used in the string definition of the alias.    Special
parameters %-1 through %-99 are also defined which represent the parameter plus all text
following it.    Thus, %-1 contains all text following the alias.    %-2 contains everything past
the first parameter, and so on.    Thus, in the example alias foo bar, alias is the aliasname,
foo is assign to %1, bar is assigned to %2, foo bar is assigned to %-1, and bar is assigned to
%-2.    Any text following the aliasname that is not used as a parameter is appended to the
results of the alias expansion.

ALIAS example
Simple alias
#AL fs {fill waterskin statue}
When fs is entered, the string fill waterskin statue is sent to the MUD.

Using delayed expansion
#AL fs {fill @container statue}
When fs is entered, the value of @container is expanded, and the result is send to the MUD. 
If @container has the value of jug, then the string fill jug statue is sent to the MUD.

Using parameters
#AL kk {kill %1;kick %1}
Used with a parameter.    If kk rabbit is entered, the commands kill rabbit and kick rabbit are
sent to the MUD.

Delayed expansion
#AL make {#ALIAS %1 {cast %1 %%1}}
This is a complicated alias which creates other aliases.    In this case, the make alias takes a
parameter which is the name of a spell to cast.    When you use the make alias, another alias
is created with a name equal to the spell name.    Since each % is removed each time a
command is parsed, the %%1 is delayed by one step.    Thus, when you enter
make heal
the command
#ALIAS heal {cast heal %1}
is entered, which creates the new spell alias called heal

ADD
Syntax: #AD variable amount
Example

This command allows you to perform simple arithmetic to variables.    The value given by the
amount parameter is added to the current value of the variable.    If amount is not numeric,
an error occurs.    amount can also be a reference to another variable, adding its current
value to the value of the listed variable.    To subtract a value, use a negative amount.

This is the only math function currently implemented in zMUD.    A full MATH command, ala
TINTIN, is also available.

ADD example
#AD moves 1
Add one to the @moves variable

#ACTION {You get (%d) coins} {#AD gold %1}
When you pick up some coins, add their value to the @gold variable.

ALARM
Syntax: #ALA timepattern command
Related: #TRIGGER
Example

Allows you to set up a trigger based upon the time, rather than what is received from the
MUD.    The timepattern can contain a specific time, or can include wildcards as shown below.
If preceeded with a minus (-), the connection time is used rather than the current time.

Typically, the timepattern has the format hours:minutes:seconds, although the hours and
minutes are optional.    If missing, the hours or minute parameter is assumed to be an
asterisk wildcard.    In place of a specific numeric value, you can use an asterisk to match
any value, or you can list several values separated by the OR operator (|).    You can also use
the special wildcard *value which will match when the time MOD the value is zero.    E.g. *10
matches 10, 20, 30, etc.    Finally, you can put parenthesis around the wildcards to save the
values matched to the %1..%9 parameters.

ALARM example
#ALARM -30:00 {save}
The hour isnt specified, so it defaults to *.    Thus, this trigger saves your game every 30
minutes of connect time.

#ALARM 3:00:00 {gossip Why arent you sleeping?}
This triggers at 3am local time.

#ALARM -59:(55|56|57|58|59) {#SHOW 60-%1}
Ok, heres a complicated one.    The pattern starts with a minus sign, so its going to look at
the connection time.    Then the hour parameter is missing, so any hour will match.    The
minutes is specified at 59.    The seconds match 55 or 56 or 57 or 58 or 59, and the actual
value matched is saved to %1 because of the parenthesis.    The command then takes %1
(the matched seconds), subtracts it from 60 and says the result.    The final result of this
trigger is on the last 5 seconds of every hour, you say 5 4 3 2 1.

ALL
Syntax: #ALL command
Example

Sends the specified command to all character windows.

ALL example
#ALL quit
sends the quit command to all active character windows.

BACKUP
Syntax: #BA
Related: #PATH #RETRACE
Example

Remove the last direction from the currently recorded path.

BACKUP example
If the current path is .nsew then #BA will set the path to .nse.    If the current path is .n4s
then #BA will set the path to .n3s.

BEEP
Syntax: #BEEP [value]
Related: #PLAY
Example

Plays the current beep sound.    If you specify a numeric value, then the corresponding
windows event is played instead.    The default beep sound has a value of zero.

Note that zMUD does not pause while the sound is playing.    Thus, playing two beeps in a
row will only sound one beep, since the first one is still playing when you start the second.   
To play two beeps, use the WAIT command to insert a delay.

BEEP example
#BEEP 16
play the sound for windows event 16

#BEEP;#WAIT 500;#BEEP
sounds two beeps with a 1/2 second delay.    Note that zMUD continues to process other
events during the delay, so this wont slow you down.

BUTTON
Syntax: #BU number
Example

Triggers the numbered button (from 1 to 16).    This is typically assigned to a macro key.    The
number parameter can be a variable reference, but must evaluate to a numeric value.

BUTTON example
#BU 1
triggers the first button, just as if you had clicked it.

C+
Syntax: #C+ [name]
Related: #C-
Example

Starts capturing lines and sending them to the specified window.    If name is omitted, lines
are sent to the command editor (assuming capturing is enabled within the editor).   
Otherwise, the lines are sent to the named window.    The window is created if it doesnt exist.
If the Capture Commands option is on in the preferences, then commands entered into the
command line will also be captured to the window.

C+ example
#C+ temp
starts copying all lines received from the MUD to the window named temp.

C-
Syntax: #C-
Related: #C+
Example

Stops capturing text from the MUD.    Opposite of C+.

C- example
#C-
Wow, imagine that!

CAPTURE
Syntax: #CAP [number] [name]
Related: Editor window
Example

Captures the last number lines of text, and copies them into another window.    If number is
missing, the last line is copied.    If number is -1, all lines are copies.    If name is specified,
the lines are sent to the named window (the window is created if it doesnt exist).    If name is
omitted, the lines are sent to the command editor window.

CAPTURE example
#CAP
capture the last line from the MUD and copy it into the editor window.

#TRIGGER {tells you} {#CAP tell;#GAG}
When a line containing the string tells you is received from the MUD, the capture command
copies the line to the tell window, and the gags it from the current window.

CASE
Syntax: #CA index command1 [commandn]
Example

Allows you to select a command from a list to be executed.    The index parameter
determines the command to execute from the list given by command1..commandn.    If index
is greater then the number of commands, it wraps around.    For example, if there are four
commands and you ask for the fifth, the first is returned.    This allows you to use the
predefined variable %random to select a random command.

If the index is negative, results are undefined.

CASE example
#CASE 2 {first command} {second command} {third command}
sends the string second command to the MUD

#CASE @joincmd {join} {rescue}
if the variable @joincmd is 1 (or 3,5,7...) the string join is returned, otherwise the string
rescue is returned.

#CASE %random {Hello} {Hi there} {Hiya} {Hi}
returns a random string from the given list to the MUD.

CHARACTER
Syntax: #CH
Related: #HOST #PW
Example

Returns the name of the current character from the Character Database

CHARACTER example
If the current character name is Zugg, then #CH sends Zugg to the MUD.

CLOSE
Syntax: #CL filenum
Related: #FILE
Example

Close the file given by filenum.    It must have already been opened using the FILE command.

CLOSE example
#CLOSE 1
Closes file number 1

CLR
Syntax: #CLR
Example

Clear the screen.    The scrollback buffer is uneffected.    To clear the entire scrollback buffer
and reclaim the memory, use the Empty menu command.

CLR example
How about: #CLR

COLOR
Syntax: #CO attribute [pattern]
Related: #HIGHLIGHT
Example

If the pattern parameter is left out, this command changes the color of the last line received
from the MUD.    The color attribute can be a numeric attribute (compatible with the attribute
values used by the text modes of DOS) or can be a combination of string values listed below,
separated by commas.

If the pattern is included, a trigger is created to color any line matching the given pattern
with the specified color.

Color values:

black 0
blue 1
green 2
cyan 3
red 4
magenta 5
brown 6
gray 7
yellow 14
white 15
bold 128

to make a color brighter, add 8 to the base value.    For example, 9 is bright blue.    To change
the background color, rather than the foreground, multiply the base value by 16.    For
example, to get a red background, use 4*16 or 64.    To make the foreground font bold, add
128 to the value.

Thus, a bold white on a blue background would be 128 + 1*16 + 15 = 159.

COLOR example
#CO red
changes the color of the last line received to red.

#CO bold,red
changes the last line to bold font and colors it red

#CO 159
set color of last line received to bold white on blue background.

#CO red {tells the group}
same as #ACTION {tells the group} {#CW red}.    Whenever a string is received from the
MUD containing the pattern tells the group, the phrase is colored red.    Only the phrase is
used because #COLOR secretly uses the #CW command.    If you really want the entire line
colored, you must create the trigger manually using:

#TRIGGER {tells the group} {#COLOR red}

CONNECT
Syntax: #CON
Related: #DISCONNECT
Example

Disconnects, then reconnects to the current MUD session.    Save as File/Reconnect menu
command.

CONNECT example
#CON
drops the session, then reconnects.    If you are using auto-login triggers, you should be back
to where you were.

CR
Syntax: #CR
Example

Send a blank line to the MUD.

CR example
#CR
send a blank line to the MUD

CW
Syntax: #CW color
Related: #COLOR
Example

If used after a successful trigger, this command will color the phrase matched by the trigger
with the specified color.

CW example
#TRIGGER {Zugg} {#CW red}
Whenever a line is received containing the word Zugg, these words are colored red.    Note
that this is similar to the #COLOR command which would color the entire line red instead.

DDE
Syntax: #DDE server topic macro
Example

This command allows you to communicate with an external program via Microsoft Windows
Dynamic Data Exchange (DDE).    You must consult the documentation of your external
program to determine the syntax of its macros, and its defined topic names.    The server
name is usually the name of the program itself (without the .EXE).    There are also built-in
functions for DDE:

%dde(server,topic,item)
Communicates with the specified server and topic and returns the requested item as the
value of the function call.

%ddepoke(server,topic,item,value)
sends value as the new item to the specified DDE server and topic.

%ddemacro(server,topic,macro)
does the same as this #DDE command and sends a DDE macro to the server.

If you open a DDE connection with the %ddeopen(server,topic) function, then you do not
need to specify the server and topic in the other functions.    This DDE connection is global to
zMUD and available in any window.    When you are finished with a DDE connection, use the
%ddeclose() function.

Note the zMUD also acts as its own DDE server.    The server name is zmud, the topic name is
also zmud, and the only defined item name is data.    Using a DDEPoke you can set data to
any command string and cause all variables and function calls to be expanded.    You can
then yuo a DDE call to retrieve the resulting value of data.    Using DDEMacro you can send a
command string to zMUD and cause it to be executed as if it were typed.

DDE example
Since DDE is somewhat obscure, I have included a bunch of useful examples:

#DDE NETSCAPE WWW_OpenURL {http://pobox.com/~~zugg/zmud.html}
If you have NetScape, this command will send the specified URL and cause it to be opened.   
Note that because the tilde character is used in zMUD to quote special characters, you must
use two of them to send one to Netscape.

#DDE ZMUD ZMUD {remove all;drop all}
Causes the indicated commands to be sent to zMUD and executed!    Watch out!

%dde(Excel,TEST.XLS,R1C1)
Tells Microsoft Excel to load the spreadsheet TEST.XLS and returns the value of cell R1C1
(row 1, column 1)

%ddepoke(Excel,TEST.XLS,R1C1,@tank)
Sends the value of the variable tank to Excel which overwrites R1C1 in spreadsheet
TEST.XLS

DEFAULT
Syntax: #DE [special-char-string]
Related: #NODEF
Example

Saves your current special characters on the stack and sets the defaults.    This is useful at
the beginning of a script to make sure standard parse characters are used while reading the
script.    Use the #NODEF command at the end of the script to restore the characters.

A string can be given as an argument to specify the new values of the special characters.   
This is a 9 character string which must be enclosed in quotes.    Each character in the string
represents one of the special characters.    To leave the character as the default, you can use
the x character as a placeholder.    The characters are:

1 Command Char (#)
2 Separator Char (;)
3 Variable Char (@)
4 History Char (!)
5 Parameter Char (%)
6 Movement Char (.)
7 Focus Char (:)
8 Quote Char (~)
9 Must be a space at the end

DEFAULT example
#DEF
Saves your special characters and restores the defaults

#DEF {xx$xxxxx }
Saves your special characters, then restores defaults, then sets the Variable char (3rd char
in string) to $.

DISCONNECT
Syntax: #DI
Related: #CONNECT
Example

Disconnects your current session.    Careful, because it doesnt ask if youre sure!

DISCONNECT example
#TRIGGER {You are BLEEDING} {#DI}
Actually not a good idea, but this will disconnect you when you start bleeding, leaving you
linkdead.    Note that on most MUDs the monster will keep hitting your linkdead character.

ECHO
Syntax: #EC string
Related: #SAY
Example

Echo the string to the top window.    Like the SAY command, except SAY echoes to the
window it was issued from.    The difference is when performing trigger actions.    Using SAY,
the trigger will echo the string to the window that issued the trigger.    Using ECHO it will
echo to the window the user is currently viewing.

ECHO example
#TRIGGER {The glow fades} {#ECHO {Sanc out in window %window}}
When your sanctuary spell runs out in any window containing this trigger, the window that
currently has focused is given the message that Sanctuary has run out.    The {} around the
message is needed for zMUD to expand the variable %window.

ERASE
Syntax: #ERA filenum
Related: #FILE
Example

Erases the file opened as file number filenum.

ERASE example
#FILE 1 old.log
#ERA 1
erases file named old.log.    Note that the FILE command prevents you from accessing files
outside the ZMUD directory, or from accessing EXE, HLP, or MUD files.

EXEC
Syntax: #EXEC command
Example

Executes the specified command.    Since the command can contain variables which are
expanded, this command can be very powerful.
Note: Use this command at your own risk!
If you use this in a trigger, you open yourself up to abuse from other players that will try to
set off yor triggers themselves.

EXEC example
#TRIGGER {^Zugg tells you (*)} {#EXEC %1}
Wow, what a trigger!    Whenever Zugg tells you to do something, you will do it.    Note the
importance of using the ^ character to anchor the pattern to the beginning of the line.   
Without this precaution, somebody could say Aurora tells you Zugg tells you to drop all
which would cause you to inadvertently drop everything you are carrying!

FILE
Syntax: #FI number name
Related: #READ #WRITE
Example

Open a file for reading and writing.    zMUD provides 10 files.    Files numbered 1-5 are text
files that can be read sequentially, or appended to.    Files numbered 6-10 are string record
files that can be read and written randomly.    If the numbered file is already opened, the
previous file is closed.    The filename given in name is restricted to the current directory
containing ZMUD.EXE and cannot refer to a EXE, HLP, or MUD file.    This protects you from
accidentally modifying important files on your disk.

FILE example
#FILE 1 test.txt
assigns text.txt to file 1.

FIND
Syntax: #FIN
Example

Finds the current location on the map.    Issues the MUD Look command and compares the
current MUD room description with the map database and sets the map location to the
matching room.

FIND example
#FIN
Same as using the Find command in the mapper menu.

FORALL
Syntax: #FO list command
Example

The specified list contains items separated by | characters.    This command loops through
the list, assigning each element in turn to the %i variable, and executes the command.

FORALL example
list=sword|ring|shield
#FORALL @list {repair %i}
Loops through the equipment in the list and repairs each one in turn.

FREEZE
Syntax: #FR [value]
Example

This command causes the output screen to split, displaying the scrollback buffer.    Text from
the MUD continues to be received, and triggers continue to execute, however, the screen
does not scroll.    If value is 0, the screen is unsplit, otherwise the screen is split.    If value is
omitted, the current split state is toggled.    This command is the same as pressing Control-Z,
selecting Freeze from the Window menu, or clicking in the lower right corner of the output
window next to the scroll bars.   

FREEZE example
#FR 1
splits the window

#FR
toggles the current split window state

GAG
Syntax: #GA [pattern]
Related: #UNGAG
Example

If the pattern is omitted, this command deleted the last line received from the MUD.    If
pattern is included, any line from the MUD matching the pattern is deleted from the input
screen.    This allows you to remove text that you don't want to see.    The last syntax is
equivalent to #ACTION pattern '#GAG'.

GAG example
#GA
removes the last line received from your screen.

#GA Zugg
removes any lines received from the MUD containing the string Zugg

#GA gossips
removes any lines received from the MUD containing the string gossip.

H+
Syntax: #H+
Related: #H-
Example

Retrieves the next command from the command history.    This only works if you have
previously used #H- to retrieve the previous command.    This command is normally assigned
to the down-arrow key.

H+ example
test1
test2
#H-
#H+
the #H- retrieves the test1 command, while the #H+ retrieves the test2 command.

H-
Syntax: #H-
Related: #H+
Example

Returns the previous command from the command history buffer.    This command is usually
assigned to the up-arrow key.

H- example
test1
test2
#H-
Retrieves the command test1 from the history buffer.

HELP
Syntax: #HE [command]
Example

Without any parameters, this command displays the Help table of contents.    If you specify a
command, help on that command is displayed.

HELP example
#HELP alias
displays help about the alias command

HISTORY
Syntax: #HIS
Example

Displays the last 20 commands in the output window.    The number preceeding each
command is the command line number.    You can execute one of the previous commands by
preceeded the command line number with the history character, which defaults to !.    !!
executes the most recent command.    You can also execute a previous command using !
pattern where pattern matches the text at the beginning of a previous command.

You can also pop up an interactive history dialog by right clicking in the output window, or by
left clicking on the arrow button at the left of the command input line.    The dialog shows the
last 20 commands.    If you single-click on a line, the command is copied into the edit line at
the top of the dialog.    You can then edit the command and press <Enter> to execute it.    If
you double-click on a command, it is sent directly to the MUD without allowing you to edit it,
and the history dialog will close.    To close the dialog without executing a command, right
click on it.

Tab completion can also be used with history.    If you use the history character (!) to specify
a command, either numerically, or by using a pattern, then press <TAB>, the matching
command will be copied into the command input buffer for editing.

HISTORY example
#HI
displays the last 20 commands

!!
executes the last command again

!3
executes the third command in the history buffer

!k
executes the last command beginning with the string k

!k<TAB>
retrieves the last command beginning with the string k for editing in the command line.

HIGHLIGHT
Syntax: #HI [pattern]
Related: #COLOR
Example

If pattern is omitted, this command makes the last line received from the MUD bold.    If
pattern is included, any line matching the pattern received from the MUD is made bold.   
This last syntax is equivalent to the command #ACTION pattern '#HIGHLIGHT'.

HIGHLIGHT example
#HI
make the last line received from the MUD bold.

#HI Zugg
highlight any line received from the MUD containing the string Zugg.

HOST
Syntax: #HO
Related: #CHAR #PW
Example

Send the name of the current MUD host.

HOST example
If the current host name is foo.bar.edu then #HO sends the string foo.bar.edu to the MUD.

IF
Syntax: #IF expression true-command [false-command]
Example

Allows conditional execution.    If the expression is true, then the true-command is executed. 
If the expression is false, then the false-command (which is optional) is executed.   
Expressions can contain variables and operators.

Expressions
zMUD implements full expressions.    Expressions can contain variables, and most common
operators.    Parenthesis can be used to override default operator presedence.    When
evaluating an operation, if all parameters of the operation are numeric, then a numeric
operation is used, otherwise a string operation is used.    The following operators are
recognized (v1 and v2 represent variables, or other expressions):

v1 + v2 add value1 to value2.    If values are not numeric, the text values are
concatenated.

v1 - v2 subtract value2 from value1
v1 * v2 multiply value1 by value2
v1 / v2 divide v1 by v2.    Any fraction is discarded.
v1 \ v2 divide v1 by v2 and return the modulo
v1 & v2 returns the logical AND of value1 and value2
v1 and v2 same as above
v1 | v2 returns the logical OR of value1 and value2
v1 or v2 same as above
v1 xor v2 returns the logical XOR of value1 and value2
v1 = v2 true if value1 is the same as value2
v1 > v2 true if value1 is greater than value2
v1 < v2 true if value1 is less than value2
v1 >= v2 true if value1 is greater than or equal to value2
v1 <= v2 true if value1 is less than or equal to value2
v1 <> v2 true if value1 is not equal to value2
v1 != v2 true if value1 is not equal to value2
v1 =~ v2 true if the pattern in value1 is contained in value2
v1 ~= v2 same as =~
-v1 return the negative of value1
!v1 return the logical NOT of value1

If the pattern matching=~ operator is used, any saved pattern parameters are available in
the true-command or false-command if expression is part of an IF command.

The constants: true, yes, on are defined with a value of 1, and the constants: false, no, off
are defined with a value of 0.

IF example
#IF @autosplit {split @gold}
If the @autosplit variable is non-zero, then the value of @gold is expanded, the string split is
sent to the MUD followed by the value of @gold.

#IF (@gold < 100000) {emote is poor} {emote is RICH!}
If the value of the @gold variable is less than 100000, then the string emote is poor is sent
to the MUD, otherwise the string emote is RICH! is sent to the MUD.

#IF (@line =~ "You receive (%d) coins") {split %1}
If the value of the variable @line matches the pattern You receive %d coins, then the
number of coins matched is stored in the %1 parameter, and the string split is sent to the
MUD, followed by the parameter.    Note the nested quotation marks needed to properly
parse this command.

IGNORE
Syntax: #IG
Related: #T+ #T-
Example

Toggle the execution of all trigger actions.

IGNORE example
#IG
start ignoring all triggers.

#IG
turn execution of triggers back on again.

INPUT
Syntax: #IN string
Example

Copy the string into the current command buffer, replacing the current contents.

INPUT example
#IN get @item
Expand the value of the @item variable and place the command get followed by this value
into the current command buffer.

KEY
Syntax: #KE key command
Example

Assign a command to a key.    key should be the full name of the key, for example, F1, or
CTRL-A, or ALT-F2.   

As an alternative syntax, you can use <key>=command as an assignment statement.

KEY example
#KEY F1 eat bread
assign the eat bread command to the F1 key

<ALT-D>={drink water}
assign the command drink water to the ALT-D key

KILLALL
Syntax: #KILLALL
Example

Erase all macro keys, aliases, variables, triggers, tab completion words

KILLALL example
#KILLALL
deletes everything (well almost).    This command cannot be abbreviated.

LMAP
Syntax: #LM path command
Related: #LOOP
Example

Loop through the given speedwalk path and execute the command for each room on the
map along the path.    The variable %i is set to the room number.

LM example
#LMAP 3sn {#SHOW %roomname(%i)}
From the current map location, move 3 squares south, then one square north.    At each step,
display the name of the room

LOAD
Syntax: #LOA filename
Related: #SAVE
Example

Load the specified settings file into the current window.    Note the the current settings file is
not saved!    Any variables in filename are expanded.

LOAD example
#LOAD dc
Load the dc.mud settings file (.MUD is the default extension)

<F1>={#LOAD combat};<F2>={#LOAD social}
loads the combat.mud file when you press F1, and loads the social.mud file when you press
F2

LOOK
Syntax: #LOOK
Example

Executes the MUD Look command and loads the displayed name, description, and exits into
the current room on the mapper.

LOOK example
#LOOK

LOOP
Syntax: #LOO range command
Example

Execute the command a number of times given by the range.    The range consists of a
minimum numeric value, followed by a maximum value, separated by a comma.    If only the
minimum value is given, then a loop of 1,value is assumed (executing the command the
number of times stated by the value).    The current value of the loop variable is stored into
the %i variable for use in the command.

LOOP example
#LOO 3 north
sends the command north to the MUD three times

#LOO 1,4 {get coins %i.corpse}
sends the commands get coins 1.corpse, get coins 2.corpse, get coins 3.corpse, get coins
4.corpse to the MUD

#LOO @num {eat bread}
sends the eat bread command to the MUD the number of times contained in the @num
variable.

LOG
Syntax: #LO [filename]
Example

Given a filename parameter, this command creates a logfile with the specified file name.    If
the file already exists, it is opened for appending.    If the file does not exist, it is created.    If
the filename is omitted, then the logging flag is toggled.

LOG example
#LO test.txt
start logging all input from the MUD to the file test.txt

#LO
toggle the logging flag.

MAP
Syntax: #MAP direction
Related: #PATH
Example

Add the specified direction to the current path being recorded.    Also sends the location to
the mapper to move you on the map

MAP example
#MAP north
if the current path is .s then the path is updated to be .sn.    If the current path is .2n then the
path is updated to be .3n.    Then you are moved one square north on the map.

#TRIGGER {%w leaves (%w)} {#MAP %1}
Follows the leader of your group and updates the map location

MATH
Syntax: #MAT variable expression
Related: #ADD
Example

Assigns the value of the expression to the given variable.    Expressions can contain numeric,
logical, and text functions.    Any variables in the expression are also expanded.

MATH example
#MATH test (1+3)*4
assigns the value of '16' to the variable @test.

#MATH test2 @test-4
if @test has the value of 16, the value of 12 is assigned to @test2

#ALIAS add {#MATH value %1+%2}
add 3 4
the value of 7 is assigned to the variable @value

MARK
Syntax: #MA
Related: #PATH
Example

Mark the beginning of a path.    Clears the currently recorded path.

MARK example
#MA
clears the current path and marks the beginning of a new path.    Turns on path recording.

MEDIA
Syntax: #ME function
Related: #PLAY
Example

Sends a command to your current multimedia device.    Usually, you use this command after
starting to play something with the play command.    Any variables in function are expanded. 
Possible values of function are:

back step the media backwards
close close the current file
eject eject the media
next go to next track
pause pause the playing of the media
play start playing the media
prev go to the previous track
resume resume playing after a pause
rewind send media back to beginning
step step the media forwards
stop stop playing the media

MEDIA example
#MEDIA next
if you are playing a CD, this moves to the next track

MEMORY
Syntax: #MEM
Example

Displays the amount of Windows memory you have left.    Mostly for debugging purposes.

MEMORY example
#MEM
16575234 bytes available

MENU
Syntax: #MEN command
Example

Executes the specified menu commands.    Specify each menu command exactly as
displayed in the menu.    For submenus, each menu must be listed separated by | characters.
Thus, the Exit command is specified as File|Exit.    There is no way for zMUD to fill in any
dialog value, this command just executes the menu command as if the user clicked on the
menus.

MENU example
#MENU {File|Exit}
Exits zMUD! (You wouldnt really do this, would you?)

#MENU {Actions|Make Button}
Pops up the Make Button dialog box.

MESSAGE
Syntax: #MES string
Example

Displays a small window containing the specified string as a message.    The window is small
and surrounded by a red border.    There is a button in the window to close it.    If the window
is not closed within 10 seconds, it closes automatically.

MESSAGE example
#MESS Sanctuary is out!
Displays the specified message in an alert window.

NAME
Syntax: #NA string
Example

Change the name of the current window.    The default name of a window is the name of the
MUD character.    With this command you can change the name to anything you want.    This
name is saved with the character.

NAME example
#NAME tank
gives the current window the name of tank.    Now when you say tank:command the
command is sent to this window.

NOMAP
Syntax: #NOMAP [pattern]
Example

Prevents the mapper from parsing the line that matches the specified pattern.    If the
pattern is omitted, then the line previous matched by a trigger is ignored by the mapper.

NOMAP example
#TRIGGER {gossips} {#NOMAP}
#NOMAP {gossips}
Each of these commands does the same thing.    This prevents any line containing the word
gossip from being parsed by the mapper.

NOOP
Syntax: #NO
Example

Does nothing!    (Wow, what a powerful command)

NOOP example
You really need an example of this one???

NODEF
Syntax: #NODEF
Related: #DEFAULT
Example

Restores the special characters saved by the #DEFAULT command.    Usually used at the end
of a script to restore the previously saved values.

NODEF example
#NODEF
Pretty simple.    Make sure you use the #DEF command to save the chars before restoring
them with #NODEF.

OK
Syntax: #OK
Related: #SLOW #STOP
Example

Confirms the currently pending slow walk direction.    This command is typically triggered by
a macro to indicate that the previous movement was successful.

OK example
#TRIGGER {^Exits} {#OK}
#TRIGGER {^It is pitch black} {#OK}
When either of these two strings are received from the MUD, the pending Slow Walk
direction is confirmed, allowing slow walking to continue.

PATH
Syntax: #PA [pathname]
Related: #MARK #RETRACE #MAP
Example

If pathname is omitted, the current path being recorded is displayed.    If pathname is given,
the currently recorded path is saved to the variable specified by pathname.    The direction
character (.) is prepended to the variable name automatically.

PATH example
#PA
displays the current path being recorded

#PA magic
saves the current path to the variable .magic.

PICK
Syntax: #PI val1 [val2 [val3 ...]]
Example

Display a pickbox with val1, val2, val3, ... listed on each line (up to 99 values can be
specified).    The user can select one or more of these lines and return them.    The values are
returned separated by the current command separator (;).

The PICK command recognized two special arguments.    An argument of the format p:string
displays the specified string as the prompt for the dialog.    An argument of the form o:1
specifies that only one selection is allowed to be chosen.    Also, each value can start with an
asterisk * to indicate that it is selected by default when the dialog is displayed.

PICK example
#PI {get all corpse} {get all.coins corpse} {sac corpse}
displays a picklist with three values.    If the user selects the first and third option, the string
get all corpse;sac corpse is returned and executed.

#PICK {p:Select an action:} {o:1} {kill @mob} {kick @mob} {*stun @mob}
displays a picklist with three values.    The string Select an action is displayed as the prompt
for the dialog box.    The o:1 option specifies that only one value can be selected from the
list.    The * in front of the third item specifies the default item to be chosen by pressing
Enter.

PLAY
Syntax: #PL filename
Related: #MEDIA
Example

Plays the specified multimedia file.    The file type is determined from the file extension of
the filename.    Tested formats are WAV, MID, AVI.    If filename refers to a drive (as in D:), the
drive is assumed to point to a CDROM with a musical CD in it.

Note that zMUD does not pause while the media is playing.    Also, only one media can be
playing at any given time.

PLAY example
#PLAY start.wav
play the startup wav audio file

#PLAY D:
start playing the CD on drive D:

sound=ouch.wav
#TRIGGER {hits you} {#PLAY @sound}
plays the file ouch.wav whenever you are hit.    There are real possibilities here!

PROMPT
Syntax: #PR aliasname
Example

Pops up a dialog box to prompt you for the value of the specified alias/variable.

PROMPT example
#PR tank
Displays a dialog box asking you to enter the value for the @tank variable.    The current
value of the variable is the default.

PW
Syntax: #PW
Related: #CHAR
Example

Sends the password of the current character to the MUD.    This password is not echoed to
the output window.

PW example
#PW
sends your password to the MUD.

READ
Syntax: #REA filename

#REA n [rec]
Example

Open the file given by filename and read it line by line, executing each line.    This allows you
to store commands in a script file and then execute this script.    Typically the KILLALL
command will be used to clear memory before reading the file.

The second form of this command reads data from the nth file (opened with the FILE
command).    If n is 1-5, then the file is a text file and rec is the line number to read.    If rec is
zero or omitted, the next sequential line is read.    If n is 6-10, then the file is a structured
file, and the record indicated by rec is read.    If rec is zero or omitted, the next record is
read.

READ example
#REA mud.txt
Read the file mud.txt line by line and execute each line as if you had typed it manually.

#FILE 1 mudlist.txt
#READ 1 10
read the 10th line from the file mudlist.txt

RECALL
Syntax: #RECALL
Example

Teleports you to the Start Location (recall location) on the map.

RECALL example
#RECALL

RECORD
Syntax: #REC [aliasname]
Related: #ALIAS
Example

Toggles the recording of an alias.    When you first enter #RECORD, zMUD starts recording all
the commands you send to the MUD.    You can monitor this recording by entering #RECORD
again during the recording.    When you are done and want to save the recording, enter the
#RECORD command followed by the name of the alias you wish to create.    If you use an
alias value of off (#RECORD off), the recording is stopped and not saved.

RECORD example
#REC
starts recording
n
w
open door
#REC
displays: Current alias: n;w;open door
#REC temple
saves the commands n;w;open door to the alias named temple and turns off recording.

RESET
Syntax: #RES n
Related: #FILE
Example

Reset the nth file back to the beginning.    The file must be opened using the FILE command.

RESET example
#RES 1
reset file 1 to the beginning.

RETRACE
Syntax: #RE [pathname]
Related: #PATH
Example

Executes the specified path backwards, allow you to retrace your steps as long as you are in
a euclidean section of the MUD.    If the pathname is omitted, the path currently being
recorded is reversed.

RETRACE example
#RE magic
If the .magic path contains .2s2wn then this will execute the path .s2e2n.

SAVE
Syntax: #SAV [filename]
Related: #LOAD
Example

Saves the current settings file.    If you specify a filename, the settings are saved to that file
instead.    Note that the name of the settings file associated with your current character is
not changed by this command.

SAVE example
#SAVE new
saves the current settings to the file new.mud

SAY
Syntax: #SA text
Example

Same as the SH command.    Echoes the specified text to the screen without sending it to the
MUD.

SAY example
#SA You have @gold coins
Prints You have nnnn coins to the screen where nnnn is the current value of the @gold
variable.

#ACTION {aura fades} {#SA SANC IS OUT!!!!;#COLOR red}
If the string aura fades is received from the MUD, the string SANC IS OUT!!!! is displayed to
your screen and colored red.

SCROLL
Syntax: #SC pattern
Example

Displays all lines in the scrollback buffer that match the specified pattern.

SCROLL example
#SC Zugg
Displays every line in the scrollback buffer that contains the string Zugg

SEND
Syntax: #SE filename [prefix] [postfix]
Example

Sends the contents of filename to the MUD.    Each line of the file is prefixed by the prefix
string before being sent and the postfix is appended to each line.

SEND example
#SEND notes.txt {tell zugg}
Sends the file notes.txt and prefixes each line of the file with tell zugg

SESSION
Syntax: #SES [character-name|hostname port]
Example

Opens a new MUD session to the specified character or host.    If you enter a single
parameter, it should be the ID of a character in the character database that you want to run. 
If you specify two parameters, the first is the host name or IP address of a MUD, and the
second parameter is the port number.

SESSION example
#SES Zugg
Opens a new session to the entry in the character database with an ID of Zugg

#SES jitter.rahul.net 6666
opens a new session to the MUD on host jitter.rahul.net port 6666.

SHOW
Syntax: #SH text
Example

Echoes the specified text to the screen without sending it to the MUD.    Similar to SAY except
that the text is processed just as if it were received from the MUD (usually for testing
triggers) and it is evaluated.

SHOW example
#SH You have @gold coins
Prints You have nnnn coins to the screen where nnnn is the current value of the @gold
variable.    Any trigger set up for this type of pattern will get triggered.

SLOW
Syntax: #SL path
Related: #STEP #STOP #OK
Example

Executes the specified path in Slow Walking mode.    In this mode, a single direction is sent
to the MUD, then zMUD waits for confirmation before sending the next direction.    Directions
are confirmed with the #OK command, and aborted with #STOP.    If a Slow Walk was
aborted, it can be resumed with the #STEP command

SLOW example
#SL .n2es
Sends the north command to the MUD.    Then waits for confirmation.    If confirmed, then
east is sent, and so on.   

STATUS
Syntax: #ST text
Example

Sets the definition used for the status line displayed beneath the output window.    This line
can contain variables which are expanded before the status line is displayed.    The status
line is updated whenever a variable is changed.

STATUS example
#ST {Gold: @gold    Tank: @tank}
If the value of @gold is 1234 and the value of @tank is Zugg, then the text

Gold: 1234    Tank: Zugg
is displayed on the status line.

STEP
Syntax: #STE
Related: #SLOW #STOP #OK
Example

Resumes a previous aborted Slow Walk by executing the next step in the path.

STEP example
#SLOW .n2es
North is sent, but never confirmed, so Slow Walking stops
#STEP
sends north once again to restart the Slow Walk.

STOP
Syntax: #STO
Related: #SLOW #STEP #OK
Example

Aborts the current Slow Walk.    Typically used in triggers.

STOP example
#TRIGGER {A gang member is here} {#STOP;kill gang}
If the pattern A gang member is here is received from the MUD, any Slow Walk is aborted
and the gang member is killed.    You can then resume your walking with #STEP after the
gang member is dead.

STW
Syntax: #STW string
Related: #STATUS
Example

Specifies the definition of the status window.    The status window is like the status line
except it can contain more than one line, and can contain %ansi color sequences.    The
status window can be positioned and sized anywhere on the screen (the position and sized is
remembered).    You can use the %CR function to insert a newline, and the %ANSI function to
change the color of text.    Right clicking on the status window also lets you set its definition
string.

STW example
#STW { Hp: @hp %cr Exp: @exp %cr %ansi(red)Tank: @tank}
Defines a three line status window.    The first line shows that current hitpoints in the @hp
variable, the next line shows the experience in the @exp variable, and the last line shows
the name of the current tank in red.

SUBSTITUTE
Syntax: #SU string
Example

This command is used in conjunction with triggers to change the text matched by the last
trigger pattern to something else.    It is useful for removing clutter on the screen.

SUBSTITUTE example
#TRIGGER {(*) tells you,} {#SUB {%1:}}
Replaces all lines received from the MUD of the form xxx tells you, with the text xxx: .    This
saves room on the screen and is expecially useful in a subwindow that captures text
matching a pattern.

T+
Syntax: #T+ classname
Example

Enable execution of all triggers with the specified classname.

T+ example
#T+ autosplit
turn on the triggers in the autosplit class.

T-
Syntax: #T- classname
Example

Disabled execution of all triggers with the specified classname.

T- example
#T- autosplit
turn off all triggers in the autosplit class.

T?
Syntax: #T?
Related: #TIMER #TS
Example

Display the amount of time remaining in the timer.

T? example
#T?
If 10 seconds are left in the timer, the string 10 secs is displayed.

TAB
Syntax: #TA word
Example

Add the specified word to the tab completion list.    If you type the first part of this word and
press <TAB> the rest of the word will be filled in for you.

TAB example
#TA zugg
Add zugg to the tab completion word list.    If you now enter z then press <TAB> the ugg will
be filled in for you.

TELEPORT
Syntax: #TE room [zone]
Related: #WALK
Example

Changes your location on the map to a specific location -- your MUD position is unchanged.   
You can specify either a room name (the short name of a room), or room number, and you
can specify either a zone name or a zone number.    If the zone is omitted, the current zone is
assumed.

TELEPORT example
#TE temple Midgaard
Sends you to the room marked as the temple in the Midgaard zone

#TE 0 New Thalos
Sends you to room zero in the zone of New Thalos

TIMER
Syntax: #TI
Related: #T? #TS
Example

Toggles the timer.    If the timer is off, it is turned on.    If it is on, then it is turned off.    Note
that the amount of time left in the timer is not effected by this command.

TIMER example
#TI
turns on or off the timer.

TS
Syntax: #TS [value]
Related: #TIMER #T?
Example

Sets the value of the timer and starts the countdown.    At 5 seconds before the counter hits
zero the string TICK IN 5 SECONDS. is displayed on the screen.    If the value is omitted, then
the origin of the timer is reset.

This timer is typically used to time ticks in the MUD.    To get started, enter #TS value where
value is the approximate time between ticks.    When a tick actually arrives, enter #TS
without a parameter to fine tune the timer interval.    You can then set up an action that
triggers on the TICK IN 5 SECONDS. string to perform an action such as resting.

TS example
#TS 60
set the tick timer to 60 seconds and begin the countdown

#TS
refine the timer interval.    Use this when the tick actually arrives.

TRIGGER
Syntax: #TR pattern command [classname]
Example

This is one of the most powerful features of zMUD.    It allows you to define a command to be
executed whenever the matching text is received from the MUD.   

The first parameter is the text to be matched.    If the text contains a space, you need to
enclose it in quotes.    This pattern can contain special pattern matching symbols and
wildcards.    The second parameter is the command to be executed when the pattern is
received from the MUD.    Since this command usually consists of more than one word, you
must enclose it in quotes.    The third parameter is optional, and is the name of the trigger
action class that this action is part of.    Triggers can be enabled and disabled when part of a
class.

For advanced trigger options, you must go to the Preferences dialog.    In this dialog, you can
determine whether the action is triggered at the end of each line received from the MUD, or
if it is just triggered at the end of receiving a block of data from the MUD.    Responding to
MUD prompts such as Username and Password require a trigger that activates after a block
of text is received since these prompts are not normally followed by a newline.

In the Preferences dialog you can also determine whether the trigger action is enabled when
you first load the data file.    You can also individually enable or disable triggers individually
as well as by class name.

TRIGGER example
A simple trigger action
#TR {chats} {#COLOR red}
whenever a line containing the word chat is received, the color of the line is changed to red.

Triggers for automatic logins
#TR {^Username:} {#CH}
#TR {^Password:} {#PW}
In the Preferences dialog, turn off the Trigger on Newline option and turn on the Trigger on
Prompt so that these macros dont wait for a newline character.    Note that the ^ character
at the beginning of each pattern forces them to match the beginning of a line.

Parameters in triggers
#TR {^You get (%d) coins} {split %1} autosplit
Whenever you see a line like You get [number] coins the number of coins is stored in the %1
parameter.    The command then uses this value to split the coins among the party members.
A class name of autoplit is used so that you can enable and disable the trigger using the T+
and T- commands.

TYPE
Syntax: #TY filenum [pattern]
Related: #FILE
Example

If pattern is omitted, the entire contents of the numbered file are displayed on the screen
(starting from the current position of the file).    If pattern is given, only lines matching the
pattern are displayed.    Pattern can contain full pattern-matching commands.

TYPE example
#FILE 1 mudlist.txt
#TYPE 1
displays the entire contents of the file mudlist.txt to the screen

#TYPE 1 castle
only displays lines from mudlist.txt containing the word castle

TZ
Syntax: #TZ
Related: #TS
Example

Resets the tick timer to zero but does not change its duration.

TZ example
#TZ
Resets the tick timer to zero

#TRIGGER {The sun rises} {#TZ}
Resets the tick timer when the text The sun rises is received from the MUD.

UNALIAS
Syntax: #UNA alias
Related: #ALIAS
Example

Deleted the specified alias from memory.    Careful, there is no way to get it back after you
do this.

UNALIAS example
#UNA kk
removes the alias called kk

UNGAG
Syntax: #UNG
Related: #GAG
Example

Prevents the current line from being gagged.    Typically used in a trigger to undo the GAG
action of a previous trigger.

UNGAG example
#TRIGGER {Zugg} {#GAG}
#TRIGGER {tells you} {#UNGAG}
Normally, the first trigger would gag all lines that contain the string Zugg.    However, the
second trigger looks for the string tells you and ungags it.    Thus, the string Zugg tells you
will still be displayed.

UNKEY
Syntax: #UNK key
Related: #KEY
Example

Deleted the specified key macro from memory.    Careful, there is no way to get it back after
you do this.

UNKEY example
#UNK <F1>
removes the macro assigned to the F1 key

UNTRIGGER
Syntax: #UNT pattern
Related: #TRIGGER
Example

Deleted the trigger assigned to the specified pattern from memory.    Careful, there is no way
to get it back after you do this.

UNTRIGGER example
#UNT {tells you}
removes the trigger associated with the pattern tells you

UNVAR
Syntax: #UNV variable
Related: #VAR
Example

Deleted the specified variable from memory.    Careful, there is no way to get it back after
you do this.

UNVAR example
#UNV tank
removes the variable called tank

UNTIL
Syntax: #UN expression commands
Example

Execute the given commands until the expression evaluates to TRUE (non-zero)

UNTIL example
#VAR A 10
#UNTIL (A = 0) {#SHOW @A;#ADD A -1}
Displays a countdown from 10 down to 1.    When @A becomes 0, the loop stops.

URL
Syntax: #URL url
Example

Automatically launch your web browser to display the specified URL.    Requires that you
have a Web Browser that associates itself with .HTM files and that supports the Open_URL
DDE call (has been tested on Windows 95 with Netscape and Internet Explorer)..

URL example
#URL http://www.pobox.com/~~zugg/zmud.html
Displays the zMUD Home Page in your Web Browser.    Note that two ~ characters are used
since the first one represents the default zMUD Quote character.

VARIABLE
Syntax: #VA variable value
Example

Similar to the ALIAS command.    Assigns the specified value to a variable.    You do not need
to specify the @ variable character.    This allows you to define variables independent of the
user's variable character setting.

An alternative syntax is variable = value or variable := value.

VARIABLE example
#VA coins 1000
assign 1000 to the @coins variable

coins = 1000
same as above.

VERBATIM
Syntax: #VERB [value]
Example

Toggles the parsing mode.    If value is specified, then it is used to set the parsing mode.   
Parsing is on if the value is non-zero.

VERBATIM example
#VERB
Same as selecting the Parse option from the Settings menu.

VERSION
Syntax: #VE
Example

Displays the current version and date of zMUD

VERSION example
You dont really need an example of this, do you?

WAIT
Syntax: #WA [time]
Example

Delays processing of further commands on the line until text is received from the MUD.   
Sometimes command from zMUD can be executed too fast for the MUD.    This command is
used to slow them down.

If the time parameter is specified, the processing of further commands on the line is delayed
the amount of time specified.    Time is in units of milliseconds - e.g. 1000 is 1 second.    Note
that the commands remaining on the line are queued up for this time.    You can still enter
other commands on the command line while waiting.    Only one WAIT can be active at a
time.    Starting a second WAIT cancels the first and discards the commands in the queue.

WAIT example
west;#WA;kill citizen
sends the west command to the MUD, then waits for some output from the MUD, then sends
the kill citizen command.    Without the #WA command, on some MUDs the kill citizen would
be sent before you actually moved west.

#WA 2000;kill citizen
wait for 2 seconds, then send the kill citizen command to the MUD

WALK
Syntax: #WAL room
Example

Speedwalks you to the named room (short name) on the map.    The same as selecting the
room from the pulldown box on the right-most edge of the mapper status bar.

WALK example
#WALK temple
Speedwalks you to the room marked as the temple within the current zone no matter where
you are in the zone.

WHILE
Syntax: #WH expression commands
Example

Execute the given commands as long as the expression evaluates to TRUE (non-zero)

WHILE example
#VAR A 10
#WHILE (A <> 0) {#SHOW @A;#ADD A -1}
Displays a countdown from 10 down to 1.    When @A becomes 0, the loop stops.

WINDOW
Syntax: #WIN name [filename]
Example

Bring the specified window to the top.    If the window doesnt exist, it is created.    Note that
when the window is created, the file name.ZCR or name.MUD is loaded (ZSC is a text script
file, MUD is a binary settings file).    If filename is specified, then that settings file is loaded
instead.

WINDOW example
#WIN tell
create a new window named tell.    It tried to load tell.zsc or tell.mud as the settings for this
window.

WIZLIST
Syntax: #WI
Example

Display the credits for zMUD.

WIZLIST example
Try it and see!

WRAP
Syntax: #WR [column]
Example

Toggles the auto word wrap mode.    If column is specified, the text is wrapped at the given
column.

WRAP example
#WRAP
Turns on word wrapping

WRITE
Syntax: #WR n value [rec]
Related: #READ
Example

Write a value to the nth file.    If n is 1-5 then the file is a text file, and the value is appended
to the end - rec is ignored.    If n is 6-10, then the file is structured, and value is written to the
record given by rec.    If rec is zero or omitted, value is appended to the file.

WRITE example
#WR 1 {logged onto Dark Castle}
append the string to the end of text file number 1.

#WR 6 {this is record 3} 3
writes the string as the third record in file 6.

YESNO
Syntax: #YE question yes-command no-command
Example

Displays a dialog box that asks the specified question.    If the Yes button is clicked, the yes-
command is executed.    If the No button is clicked, the no-command is executed.

You can customize the buttons by placing the caption you want for the button in front of the
command, separated by a colon.    For example {Sword:get sword} creates a button labeled
Sword which executes the command get sword when clicked.    Using these custom buttons,
you can add as many buttons to the YESNO command as you want.    If you put an asterisk *
at the beginning of a button caption, that button is flagged as the default button.

YESNO example
#YESNO Do you want to sac the corpse? {sac corpse}
Displays a standard Yes/No dialog.    If Yes is clicked, the corpse is sacrificed.

#YESNO Where to you want to go today? {Temple:.temple} {Guild:.guild} {*Microsoft:#URL
http://www.microsoft.com}
Displays a dialog with three buttons, labeled: Temple, Guild, and Microsoft, respectively.   
The Microsoft button is the default button because of the * in the caption.    If the Temple
button is clicked, the command .temple is executed, which speedwalks to the temple path.   
The Guild button works in the same way.    If the Microsoft button is clicked, the #URL
command sends your web browser to the Microsoft site.

Repeating Commands
Syntax: #number command
Example

The specified command is sent to the MUD the number of times given by the number
parameter.    This number must be a constant.    To use variables, see the LOOP command.   
The current value of the repeat counter is saved in the predefined variable %repeatnum for
your use in the command.

Repeating example
#10 kill mound
send the command kill mound to the MUD 10 times.

Zugg's Multi-User Dungeon client

Multi-User Dungeon

Auto Login
The first time you log into a new MUD, zMUD tries to automatically detect your character
name and password information in order to create triggers to log you in automatically the
next time.

If the information shown in this dialog is correct, click Yes and zMUD will create the autolog
triggers for you.    If the information is wrong, click No.    If you just created a new character
on this MUD, the prompts are different than those given when you log in with an existing
character, so click No and let zMUD detect the information again when you log in the next
time.

If you want to prevent this dialog from appearing, enter a value in the Character Name field
in the Character Database.

Command Wizard
This dialog shows the commands or functions used by zMUD.    Select a command from the
list on the left, and a brief description of the command along with the parameters will be
shown.    You can enter values for the parameter, and the command or function syntax will
be displayed in the status line.    If you click OK, the text in the status line will be transferred
to the command line.

If you want more help on the command that is selected, click the More Help button.    To see
an example of the commands usage, click the Example button.    Note that the Function
wizard does not have these additional buttons at this time.

Status Window definition
This window allows you to interactively set the definition of the status bar and the status
window.    The status bar is displayed at the bottom of the MUD window.    The status window
is displayed using the Status command in the Window menu.

Status lines and windows can contain variables or functions.    The status window can contain
more than one line.

Command Editor Options
This dialog allows you to set several options used by the Command Editor.    The Line Prefix
contains a list of strings that can be sent at the beginning of each line by the editor.    It is
also accessed from the main editor window.

The Blank Line Replacement option determines what is sent to the MUD instead of sending a
blank line.

Finally, the word wrap settings control word wrapping within the editor window.

Quick Editor
The Quick Editor is used to edit long lists of commands.    Each command is listed on a
separate line, terminated by the command separator character (usually a semi-colon ;).   
When you click OK, the lines are collapsed back into a single-line definition.   

Feedback
This dialog allows you to send feedback to the author of zMUD.    It is very important that you
enter a proper email address or the author will not be able to send a reponse back to you.   
Enter your email address, the subject of the email, and the text of the email, then click the
Send button.    Information about your registration status, zMUD version, and Windows
version will be sent along with your message automatically to help the author debug your
problem.

Importing Settings
This dialog allows you to import settings from another MUD file.    The settings in the file
being imported are shown on the left.    The settings to be imported into memory are shown
on the right.    You can highlight items in either list, the click one of the arrow buttons in the
middle to copy it from one side to another.    The settings that you have copied to the list on
the right are imported into memory when you click the Import button.

The filter list below the left window selects the type of information being imported.    You can
import aliases, triggers, buttons, macros, variables, paths, colors, etc.

Speed Menu
The Speed Menu is the menu that is displayed when you right-click on the output window.   
You can define the items shown in this menu in this standard preferences dialog.    The
current menu items are shown on the left.    Click New to add a new item, and enter the Item
Name and associated commands in the boxes provided.    You can also select which item is
used as the default when you double-right-click, or whether the last selected menu item is
used.

The %selline and %selword variables are very useful in the definition of menu items since
they indicate the word and line that were right-clicked.    For example, the definition:
kill %selword
will issue the kill command to the MUD along with the word you right clicked on.    Thus, if
you set this as the default action, and double-right-click on the name of a mob, that mob will
be killed.    This beats typing in the name of the mob.

Registering
This dialog is used to enter your registration information.    See the zMUD web page for
information on how to register and how much it costs.    Once you have received your
registration information, enter your registration name and registration ID into the boxes
provided and click OK.    If you have any problem entering your registration information,
contact the author of zMUD

